
Tool Demonstration:
OpenModelica Graphical Editor and Debugger

EOOLT Workshop
April 19, 2013, Nottingham

Adeel Asghar and Peter Fritzson

2

OpenModelica OMEdit Graphic Editor

GUI Improvements in coming 1.9.0 final release
(now available in nightly builds)
• Better Package support
• Better and simpler access to parameters
• Better model documentation display

3

OpenModelica OMEDit Graphic Editor & GUI

4

5

Plot Example

Show
Demo
Movie

6

Static vs Dynamic Debugging

• Static Debugging
• Analyze the model/program at compile-time
• Explain inconsistencies and errors, trace error dependencies
• Example: Underconstrained/overconstrained systems of equations
• Example: errors in symbolic transformations of models

• Dynamic Debugging
• Find sources of errors at run-time, for a particular execution
• Declarative dynamic debugging – compare the execution with a

specfication and semi- automatically find the location of the error
• Traditional dynamic debugging – interactively step through the

program, set breakpoints, display and modify data structures, trace,
stack inspection

• Goal: Integrated Static and Dynamic Debugging

7

Dynamic Debugging

Large Modelica Algorithmic Code
Models

8

Tool Architecture and Communication

8

Modelica Model

C Code

OpenModelica
Compiler

Executable

DebuggerGraphical
User Interface

GDB-MI

Gnu Compiler

Modelica source code
positions are mapped

to C source code
positions

9

Example Mapping Modelica Postions to C Code

 Convert Modelica code to C source code by
adding Modelica line number references.

10

Debugger Integrated in Eclipse OpenModelica
MDT Environment
• Eclipse plugin

MDT (Modelica
Development
Tooling) is the
integrated
development
environment

• Debugger is a
debug plug-in
within MDT

11

Static Debugging

Transformational Debugging of
Equation-Based Models

12

Debugging Equation Systems

Modelica Compiler Backend
 Complex mathematical transformations
 Hidden to users
 Users want to access this information
 Not intuitive

 No explicit control flow
 Numerical solvers
 Linear/Non-linear blocks
 Optimization
 Events

13

Tracing Symbolic Transformations

 Simple Idea
 Store transformations as equation metadata

 Works best for operations on single equations
 Alias Elimination (a = b)
 Equation solving (f1(a,b) = f2(a,b), solve for a)

 Multiple equations require special handling
 Gaussian Elimination (linear systems, several equations)
 ...

14

Tracing Overhead?

 OpenModelica compiler implementation is so fast that
tracing is enabled by default
 1 extra comparison and/or cons operation per optimization
 Not noticable during normal compilation

 No overhead unless you output the trace

15

a = b

c = a + b

d = a - b

c = a + b (subst a=b) =>

c = b + b (simplify) =>

c = 2 * b

d = a - b (subst a=b) =>

d = b - b (simplify) =>

d = 0.0

 The alias relation a=b
stored in variable a

 The equations are e.g.
stored as
(lhs,rhs,list<ops>)

Substitution Example, Storing the Trace

16

Trace Example (1)

(1) substitution:
y + der(x * (time * z))
=>
y + der(x * (time * 1.0))

(2) simplify:
y + der(x * (time * 1.0))
=>
y + der(x * time)

(3) expand derivative
(symbolic diff):

y + der(x * time)
=>
y + (x + der(x) * time)

(4) solve:
0.0 = y + (x + der(x) * time)
=>
der(x) = ((-y) - x) / time

0 = y + der(x * time * z); z = 1.0;

