icerational Energy Research Centre

Toward an Equation-Oriented Framework for Diagnosis of Complex Systems

Gregory Provan and Alexander Feldman

Apr 19, 2013, Nottingham

Overview

- Motivation
- Related Work
 LNG vs. Modelica
- Lydia-NG Overview
- Examples
 - Circuits
 - Thermo-Fluid Systems
- Summary

Motivation

- How can Modelica libraries be used for Model-Based Diagnosis (MBD)?
- Significant value in Modelica libraries
 - Can this be leveraged for MBD?
- Must understand difference between
 - Simulation (via Modelica)
 - MBD

Contributions

- Equation-based framework for Model-Based Diagnosis
 - Generalisation of Modelica (inference)
 - Uses multiple simulation tools, as well as diagnosis inference tools
- Application to several systems
 - Circuits, thermo-fluid systems

Diagnostics Modeling

- Assume component-based framework
- Each component has operating mode
 - Mode defines a set of dynamical equations
 - Example
 - $\underline{y} = f(\underline{x}, \underline{h})$
 - <u>y</u>: output; <u>x</u>: state vector; <u>h</u>: mode

system xor2(bool o, i1, i2)

{

bool h; \leftarrow mode variable attribute health(h) = h; \leftarrow like annotations

h => (o = (i1 != i2)); modes !h => (o = !(i1 != i2));

Simulation

• Given inputs and a health state, compute outputs

<u>x</u>: input, <u>y</u>: output,

f: system function, f_i: component functions

• Simulate: solve problem $\underline{y} = f(\underline{x})$

Fault Diagnosis

 Identify component(s) that are root cause of failure (error)

- \underline{x} , \underline{y} : observation vectors
- f: system function, f_i: component functions
- <u>h</u>: system health state vector, h_i: component health variables
- Diagnose failure: solve inverse problem $\underline{h} = f^{-1}(\underline{x},\underline{y})$
- Diagnosis: \underline{h}_2 = fault state, or \underline{h}_4 and \underline{h}_5 = fault state

Simulation vs. Diagnosis 🛛 ≷

- Simulation
 - solving a system of equations for some output variables
- Diagnosis
 - solving a system of equations for some set of health variables,
 - However:
 - Diagnostic systems typically under-constrained due to ignorance of abnormal behavior, etc.
 - Simulation systems often constructed to have one solution,
 - in diagnosis we want to compute multiple solutions (hypotheses/diagnostic candidates)

Overview

- Motivation
- Related Work
 - Lydia-NG vs. Modelica
- Lydia-NG Overview
- Examples
 - Circuits
 - Thermo-Fluid Systems
- Summary

Related Work

- Rodelica
 - Atemporal, interval-based approach
- Modelica
- Bond graphs

- LYDIA-NG is very similar to Modelica
 - solves Modelica models for some parameters
 - we plan a Modelica translation tool for easy modeling
 - problem is some Modelica component libraries include non-declarative model entities

LYDIA-NG vs. MODELICA

- Lydia-NG
 - Braces (C/C++/Verilog)
 - Not object-oriented (may become in the future)
 - strongly-typed
 - quantified (existential, universal), static
 expansion

- MODELICA
 - begin/end(Pascal/VHDL)
 - object-oriented
 - strongly-typed
 - less static

LYDIA-NG vs. MODELICA (cont.) 😻 ice Research Centre

• Lydia-NG

- no connectors (only variables)
- no flow variables (a.k.a. write your own "global" equations)
- fairly complex data types: structures, arrays, array of structures, etc.
- special treatment of Boolean systems (legacy)

- MODELICA
 - uses connectors
 - flow variables
 (equation sugar)

Compilation and Inference

- Lydia-NG
 - Compilation not a key aspect
 - Output C code can be used by any inference system

- Modelica
 - Compilation key aspect for efficiency
 - Compilation can lead to incompatibility among Modelica inference systems

LYDIA-NG Example


```
system HeatingCoil (PneumaticPort pneumaticCold, pneumaticHot,
                   HydraulicPort hydraulicCold, hydraulicHot)
{
    float c = 4180.0; // water specific heat
    float coldSideCapacitanceRate = pneumaticCold.mflow * c;
    float hotSideCapacitanceRate = hydraulicCold.mflow * c;
    float eff = 0.6;
    float minCapacitanceRate = min(coldSideCapacitanceRate,
                                   hotSideCapacitanceRate);
    float maxCapacitanceRate = max(coldSideCapacitanceRate,
                                   hotSideCapacitanceRate);
    float heatRate = eff * minCapacitanceRate *
                     (hydraulicHot.T - pneumaticCold.T);
    hydraulicHot.T = hydraulicCold.T - heatRate / (hydraulicCold.mflow * c);
   pneumaticHot.T = pneumaticCold.T + heatRate / (pneumaticCold.mflow * c);
```

LYDIA-NG

- LYDIA-NG is a diagnostic framework
 - Use cases:
 - modeling of diagnostic systems (also an IDE)
 - running of diagnostic scenarios in batch mode (computation of diagnostic metrics)
 - embedding in a SCADA system, e.g., a BMS
- Our view on the development of LYDIA-NG
 - collection of tools (simulators, translators, etc.)
 - simple interfaces (our users are not assumed to be expert MBD users)
 - higher coding/documentation/knowledge dissemination standards than typical projects

LYDIA-NG Overview

- Core libraries
 - simulation
 - SPICE
 - symbolic
 - ODEs/DAEs
 - Boolean circuits (old Lydia heritage)
 - diagnosis
 - forward reasoning (simulation for various health/fault states)
 - backward reasoning (residual analysis)
 - disambiguation
 - entropy-based selection of tests
 - virtual sensors (by-product)

LYDIA-NG Approach to Diagnosis

- The main idea is to run multiple-simulations simultaneously (each simulation reflects different health state)
- Choose those simulations that minimize some residual function
- Report diagnosis as a probability of each component being healthy/faulty

State of Lydia-NG Development

goce

- LYDIA-NG has reached a milestone in diagnosing an electrical system
 - results show that the software will be useful in practice
 - releasing version 1.0 after fixing some bugs, documentation, and testing
 - preview versions of the software continuously made available to **EMWiNS team members** for purpose of progresstracking, collaboration, and planning

File Edit View Project	Bu		/stem	loois	Windo	w <u>H</u> e	Ip					
0 🖉 🖥 🚳 🍋	0	k D		Q	9							
goce-eps.lprj* 🛛 🗷		TST75_GCDE.lscn										
 Project 'goce_eps' Model goce-eps.lm Scenarios TST1.lscn TST2.lscn TST3.lscn TST5.lscn TST6.lscn TST6.lscn TST8.lscn TST9.lscn TST9.lscn TST9.lscn TST11.lscn TST45.lscn TST45.lscn 		🔥 Diagnostic Results - `TST75_GCDE.lscn' 📃										
		time	H_GCDE_HTR_N.h	H_PXFA2_HPS_HTR_N.h	H_TCVmXmYmZ_HTR_N.h	H_TCVmXmYpZ_HTR_N.h	H_IPCU_B_HTR2_N.h	H_EGGIF6_HTR_N.h	CBM_MZ.h	M_Mz.h	uncertainty	ē
		501	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		1001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
TST75_GCDE.ISCN		1501	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6
	-	2001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		2501	0.128	0.123	0.101	0.101	0.140	0.140	0.132	0.136	0.009	
		3001	0.128	0.123	0.101	0.101	0.140	0.140	0.132	0.136	0.009	x
		3501	0.128	0.123	0.101	0.101	0.140	0.140	0.132	0.136	0.009	
		4001	0.128	0.123	0.101	0.101	0.140	0.140	0.132	0.136	0.009	
		4501	0.128	0.123	0.101	0.101	0.140	0.140	0.132	0.136	0.009	
		5001	0.000	0.159	0.123	0.123	0.118	0.118	0.174	0.185	0.009	ĉ
		5501	0.000	0.159	0.123	0.123	0.118	0.118	0.174	0.185	0.009	
		6001	0.000	0.159	0.123	0.123	0.118	0.118	0.174	0.185	0.009	
		6501	0.000	0.159	0.123	0.123	0.118	0.118	0.174	0.185	0.009	
	4	7001	0.000	0.159	0.123	0.123	0.118	0.118	0.174	0.185	0.009	
		7501	0.000	0.159	0.123	0.123	0.118	0.118	0.174	0.185	0.009	
		Sum	mary	Residual Distribution								
	•	2				01.						

Validation of Diagnostics

- Validation of diagnostics is in general more difficult than that of simulation
 - simulation accuracy metrics such as mean difference from measured values
 - diagnostic accuracy metrics are interrelated (false positives vs. false negatives, classification errors, etc.)
 - diagnostic metrics are often domain-dependent (e.g., energy)
 - diagnostic world is "less closed", some metrics can be computed only after, e.g., "repair"

Overview

- Motivation
- Related Work
 LNG vs. Modelica
- Lydia-NG Overview
- Examples
 - Circuits
 - Thermo-Fluid Systems
- Summary

GOCE Electrical Power System

Use-Cases

- Many Boolean circuits (ISCAS-85)
 - show properties of complex systems, easier to analyze complexity
 - check correctness of some diagnostic algorithms
- Analog electrical circuits (GOCE satellite EPS, NASA's ADAPT)
- Thermal-fluid systems (UCC's AHU-9)

1: AHU9 CHW Offcoil Temperature 2: AHU9 CHW Valve Position 3: AHU9 Fresh Air Damper Position 4: AHU9 Frost Coil Valve Position 5: AHU9 Frost Offcoil Temperature 6: AHU9 Reheat Coil Valve Position 8: AHU9 Reheat Offcoil Temperature 9: AHU9 Return Air Humidity 10: AHU9 Return Air Temperature 11: AHU9 Space Air Temperature Setpoint 12: AHU9 Supely Air Humidity 15: Outside Air Temperature 16: Now Added - PPM (Parts Per Million) 17: Outside Air Humidity 18: Return Air Flowrate 19: Mix Air Temperature 20: Mix Air Humidity 21: Post Heating Coil Humidity 22: Post Dehum Cooling Coil Humidity 23: Post Reheat Coil Humidity 24: Supply Fan Flowrate 25: Chilled Water Supply Temperature 26: Chilled Water Return Temperature 27: LPHW Supply Temperature 28: LPHW Return Temperature

AHU Modeling

12-. 10-. 8-

5.25E5

5.50E5

5.75E5

6.00E5

Time (s)

6.25E5

6.50E5

6.75E5

LYDIA-NG and AHU-9

Column: 1 Line: 1

- Modeling effort includes the following:
 - Top-level topology (100%)
 - Component faultmodes and user commands (100%)
 - Component equations (0%)
- Model parametrization and calibration

AHU Simulation

• ODE

- not stiff
- RK4 will do the job
- error is function of the step-size
- We need to maintain multiple simulations that can be stopped/continued whenever sensor data arrives
- Some ODEs reduce to algebraic equations we also saw from GOCE that fault simulations are cheaper in terms of CPU time, memory

Overview

- Motivation
- Related Work
 LNG vs. Modelica
- Lydia-NG Overview
- Examples
 - Circuits
 - Thermo-Fluid Systems
- Summary

Summary

- Lydia-NG: MBD framework
 - Accepts multiple equation types
 - Generalises Modelica
 - mode-based equations
 - Wider range of inference algorithms

Future Work

- Integrate control
- Extend language to wider range of dynamical systems
- Examine other real-world applications
 - thermal systems
 - Mechanical systems (drive trains)
- DXC-2013

Call for Participation

- Want to play with/test/develop LYDIA-NG?
 - LYDIA-NG is free for academic use/open-source
 - send an email to alex@general-diagnostics.com
- Want to apply LYDIA-NG to your research/write a paper?
- Want to extend LYDIA-NG to solve #@! equations?

Come to DX-2013

 Come to DX-2013, Oct 1-4, Dan Panorama Hotel, Jerusalem (<u>http://dx-2013.org/</u>)

- DXC-2013
 - synthetic track (ISCAS)
 - electrical system (ADAPT)
 - thermal fluid system (AHU-9)
 - software track

4/23/2013

4/23/2013

35

Thank You

Introduction

History

- LYDIA diagnosis of Boolean circuits
 - SAFARI stochastic diagnosis
 - FRACTAL disambiguation of diagnoses (reduce diagnostic uncertainty entropy based methods)
 - Beyond diagnosis worst case sensor data diagnosability (MIRANDA)
- A resistor network can be modeled with Boolean variables but that is very difficult – e.g., 4-bit multiplication tables
- LYDIA-NG generalization to continuous variables
 - SAFARI-NG greedy stochastic reasoning, but also other candidate generation policies
 - FRACTAL-NG disambiguation
- The insight that allows generalization of Lydia to Lydia-NG is that simulation is a key-component in model-based diagnosis
 - What is the simulation step in the MBD circuit problem shown in the next slide?

 Entropy-based methods for computing uncertainty of a component:

$$U \mathbf{\xi} \stackrel{\sim}{=} \sum_{x \in c^*} -\Pr \mathbf{\xi} = x - \Pr \mathbf{\xi} = x - \Pr \mathbf{\xi} = x - \Pr \mathbf{\xi}$$

• Per system:

$$\overline{U} = \frac{1}{|COMPS|} \sum_{C \in COMPS} U$$

- AHU systems are typically sensor-lean to reduce cost
- AHU models are imprecise due to:
 - fine-grained CFD modeling is too complex
 - the AHU model cannot include a model of the local weather
- Sensors may drift/fail
- As a result diagnosis may be inaccurate
- We propose an algorithm that can increase the diagnostic accuracy by "playing" with the system
 - for example the system can reconfigure the mixing box to confirm/disprove a hypothesis about a failing heating coil