

Arquimedes Canedo^{*} and Ling Shen Siemens Corporation, Corporate Technology, Princeton, USA

Functional Debugging of Equation-based Languages

Restricted © Siemens AG 2013 All rights reserved.

siemens.com/answers

5

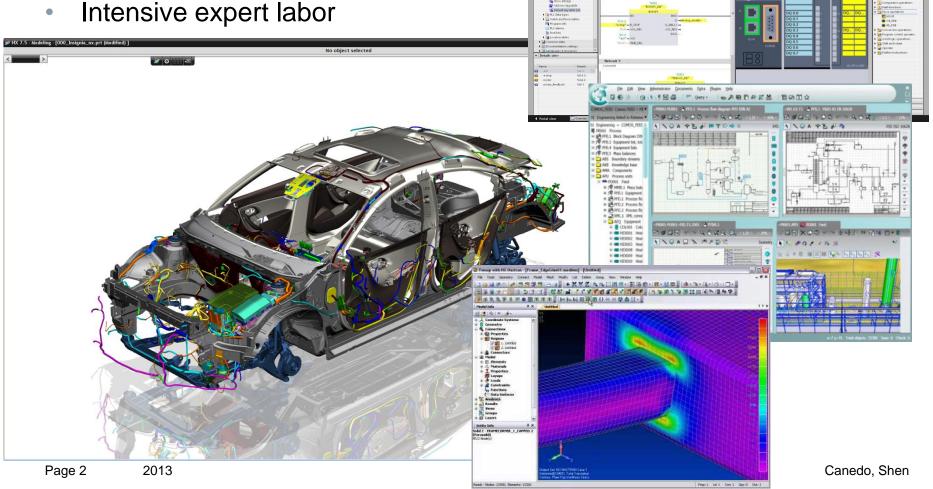
P Topalagy view A Ne

▼4

9: (*: 3 1 1: 1: 1: 1: 2 / Soorier / ...

.

00

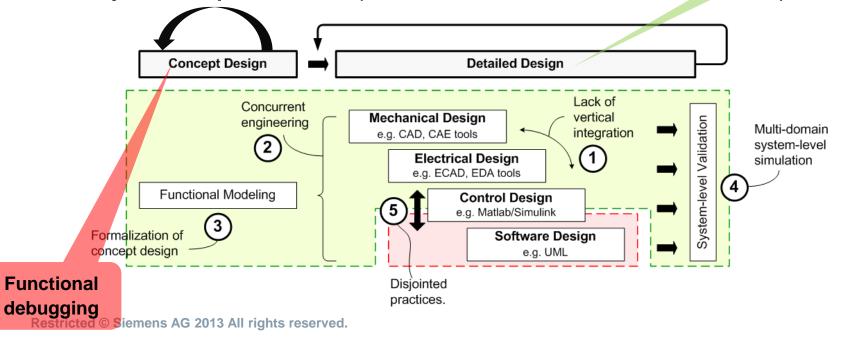

.t1 > PLC 1 [CPU 312F-2 PNOP] > Program blocks > Main Safety [F81] - P

A IE IE ×

Status Quo

Detail Design Tools

- High complexity
- Intensive expert labor

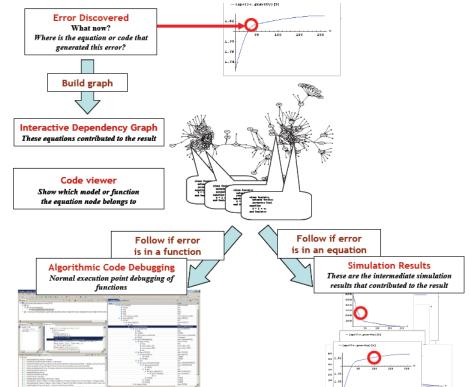

Problems with the State-of-the-art CPS Design

- 1. Lack of vertical integration
- 2. Serialization of the engineering practice
- 3. Informal concept design

2013

Page 3

- 4. Holistic system-level validation
- 5. Disjointed practices (electro-mechanical vs control)



Existing debugging techniques

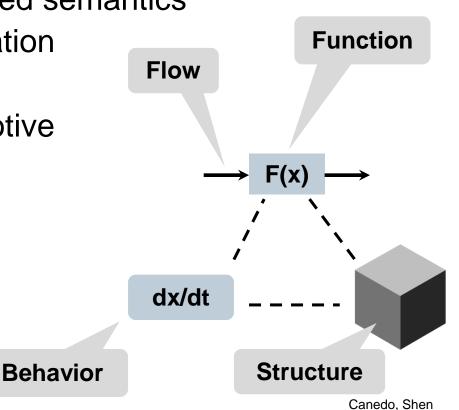
SIEMENS

State-of-the-art Debugging Techniques for Equation-based Languages

- Low-level details for detail design
- Static
 - Symbolic transformations.
- Dynamic
 - Similar to classical debugging.
- Difficult to build a system-level context.

SIEMENS

Source: Adrian Pop, Martin Sjölund, Adeel Asghar, Peter Fritzson, Francesco Casella, Static and Dynamic Debugging of Modelica Models, 9th International Modelica Conference, 2012

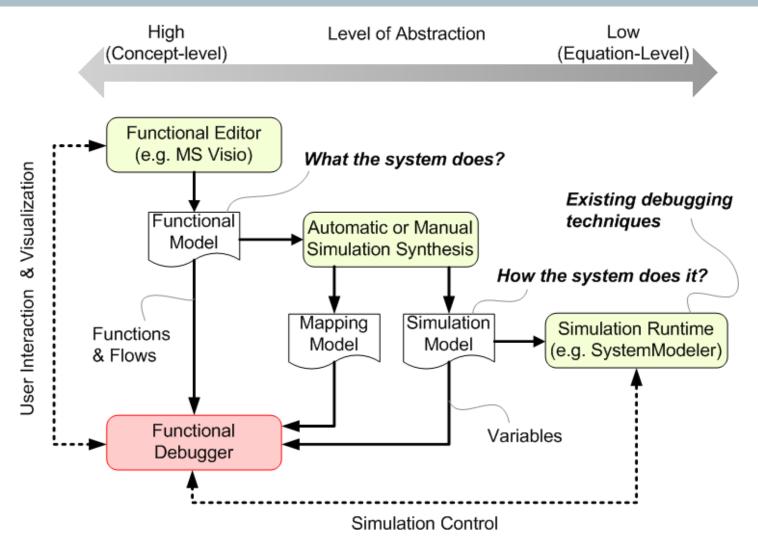


Functional Modeling

- What the system does
- Natural language
- Inter-disciplinary communication
- Visual syntax and well defined semantics
- Multi-disciplinary representation
- Functions and flows

Restricted © Siemens AG 2013 All rights reserved.

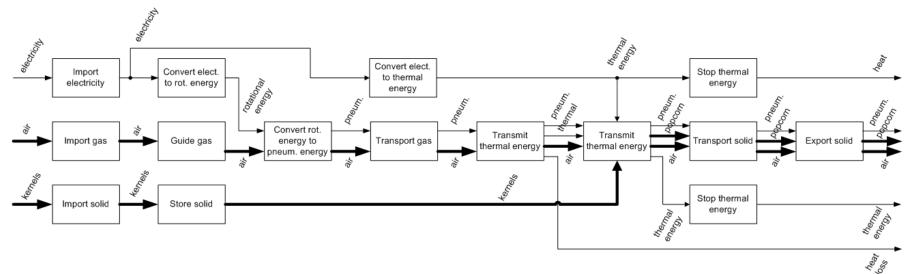
Standard practice in automotive



Functional Debugging

- The mechanism by which the variables of a running simulation are visualized through a high-level functional model to create an implementation independent understanding of the system.
- Coupling of behaviors to functions.
- High-level behavioral simulation.
 - "What" not "how"
- System-level integration problems.
- Design space exploration.
- Visualization of system flows.

SIEMENS


Functional Debugger

Functional Basis

- Well defined vocabulary by NIST
- Three flow categories
 - Material, energy, signal \rightarrow 18 flow types
- Eight function categories
 - 32 elementary functions
- Execution flows from left-to-right

Mapping between Functional and Behavioral Models

	(Currently				
		mplemented		0		
Functional Modeling		Equation-based Languages				
Flow Class	Flow Type	Conjugate Vars. (Effort/Flow)	System-Level Lang.	Domain Specific Lang.		
Energy	Electrical	Electromotive Force / Current	MSL, Simscape	Spice, VHDL-AMS		
	Mechanical (Rotational)	Torque / Angular Velocity	MSL, Simscape	NX Motion, Adams		
	Mechanical (Translational)	Force / Linear Velocity	MSL, Simscape	NX Motion, Adams		
	Mechanical (Vibrational)	Amplitude / Frequency		NASTRAN, Adams		
	Hydraulic	Pressure / Volumetric Flow	Modelon, Simscape	SIMIT		
	Pneumatic	Pressure / Mass Flow	MSL			
	Thermal	Temperature / Heat Flow	MSL, Simscape	Nastran		
	Electromagnetic	Intensity / Velocity	10 P			
	Magnetic	Mag. Force / Mag. Flux Rate	MSL			
	Chemical	Affinity / Reaction Rate	BioChem			
	Biological	Pressure / Volumetric Flow	BioChem, Wolfram			
	Human	Force / Motion				
	Acoustic	Pressure / Particle Velocity	SoundDuctFlow	Actran		
	Radioactive	Intensity / Decay Rate				
Signal	Status		StateGraph, Simulink	dSPACE, LabView, UML		
	Control		StateGraph, Simulink	dSPACE, LabView, UML		
Material	Human			Technomatix , Queueing		
	Gas			chnomatix , NASTRAN		
	Liquid			echnomatix, NASTRAN		
	Solid			Technomatix, Organig		
Restricted © Siemens AS 2013 All rights reserved.						

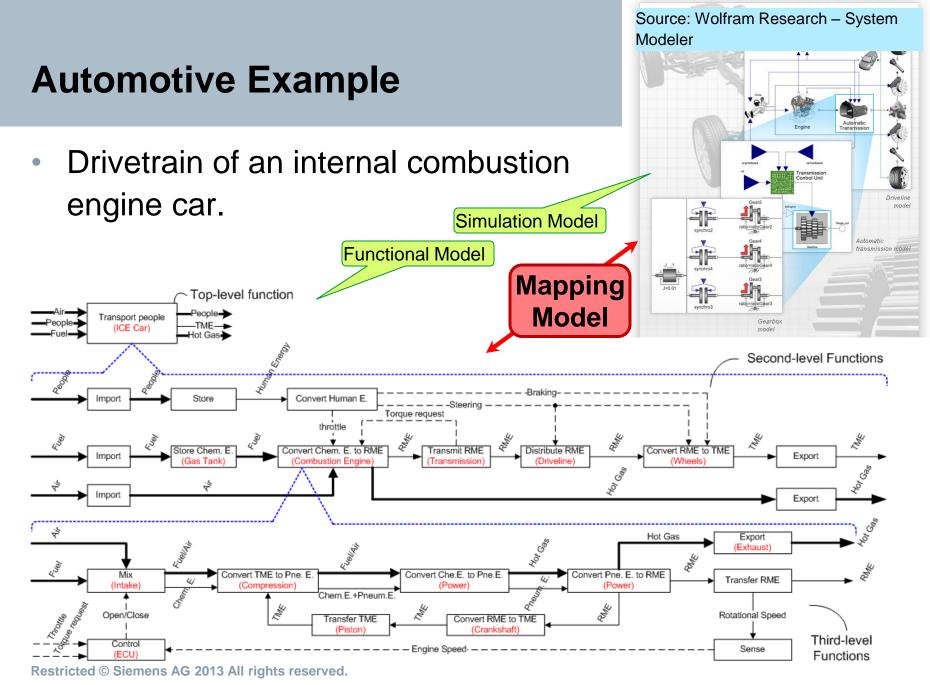
Page 9 2013

Canedo, Shen

Mapping Model

- Data structure that maintains the mapping between the functional model and the simulation model.
- Specifies the debugging actions to be taken in the functional debugger GUI.

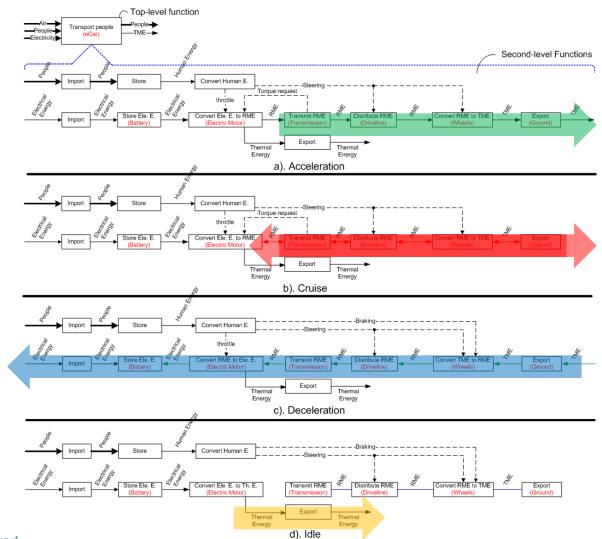
UID	Туре	Func/Flow	Simulation Component	Debugging Action
f11	Flow	RME	Drivetrain.Engine.engineSpeed	if (\$var > 4000) f11.ChangeColor(Red)
f15	Flow	Signal	Drivetrain.driver1.brakeSignal	if (\$var > 0.05) f15.setInvisible();
f92	Function	Convert RME to TME	Drivetrain.body.flange_a.f	if (\$var > 60) f11.ChangeColor(Red)


 Proposal: describe what functions are realized by the components in the MSL

Our Implementation

Communication (e.g. FMI)

Functional Editor (Functional Debugger GUI) Functional Debugger Simulation Runtime Load Functional Model Start Server Command Initialize simulation Load Simulation Start TCP Server runtime Model Confirmation **Front-end Runtime** Subscribe to Load Mapping Model variables (e.g. SysML) (e.g. OpenModelica) Start Date Session Initialize Data Initialize Data Stream Session Read User Confirmation Commands Map function objects to variables Start/Resume Υ Start/Resume Start/Resume Start/Resume simulation? simulation Simulation Confirmation Stream data after Ν **Read Variables** every time step Data Forward data to func. Display Data model using Map Data Υ Pause Pause? Pause Simulation Pause simulation Confirmation Ν Y Stop Stop? Stop simulation Stop simulation Confirmation Exit Ν Exit Exit



Page 12 2013

Functional Debugging

- System configuration
 - V6, V8
- Use-cases
 - Driving cycles
- Performance targets
 - Fuel economy
 - NVH

Restricted $\ensuremath{\mathbb{C}}$ Siemens AG 2013 All rights reserved.

Summary

- Functional debugging for concept design
 - Visualization of system flows
 - Mapping of functions to behavioral models through conjugate variables
 - Design space exploration tool
 - Orthogonal to existing debugging techniques
- Systems Engineering tools
 - Requirements, Functions, Logical, Physical
- Multi-tool debugging interface
 - e.g. Modelica, Nastran, VHDL

SIEMENS

Thank you!

Dr. Arquimedes Canedo Staff Scientist

Siemens Corporation Corporate Technology 755 College Road East Princeton, NJ, USA

arquimedes.canedo@siemens.com