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Introduction

This work is aimed at
I Introducing some “model approximations”
I to improve simulation efficiency
I in an automatic way
I in the context of Equation-based Object-Oriented Languages

and Tools (EOOLT).
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What and how to approximate?

EOOLT are generally unsuited for the introduction of
approximations

I Approximations cannot be specified at component-level
I Approximations come from properties of the whole model
I The typical manipulation toolchain does not allow

approximation

Two different manipulations can be performed
1. Acting on the continuous-time equations

I MOR, Transmission Line Modelling, Neglecting Terms,
Linearisation, . . .

2. Acting on the discrete-time solution
I Dynamic Decoupling, Co-simulation, . . .

A.V. Papadopoulos and A. Leva, Apr. 19th, 2013 @Nottingham, UK



What and how to approximate?

EOOLT are generally unsuited for the introduction of
approximations

I Approximations cannot be specified at component-level
I Approximations come from properties of the whole model
I The typical manipulation toolchain does not allow

approximation

Two different manipulations can be performed
1. Acting on the continuous-time equations

I MOR, Transmission Line Modelling, Neglecting Terms,
Linearisation, . . .

2. Acting on the discrete-time solution
I Dynamic Decoupling, Co-simulation, . . .

A.V. Papadopoulos and A. Leva, Apr. 19th, 2013 @Nottingham, UK



Outline

1 Model approximation in EOOLT

2 Dynamic Decoupling

3 Application examples

4 A unifying manipulation toolchain

A.V. Papadopoulos and A. Leva, Apr. 19th, 2013 @Nottingham, UK



Dynamic Decoupling

Dynamic Decoupling is an approximation framework divided into 2
subsequent phases
1. Structural (system-wide) Analysis

I Eigenvalue Analysis
I Cycle Analysis
I . . .

2. Decoupled Integration
I Mixed-Mode integration
I Co-Simulation
I . . .
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Cycle Analysis

Consider the state space form of a continuous-time ODE system

ẋ = f(x,u)

that discretised with Explicit Euler and an integration step h yields

xk+1 = xk + h · f (xk,uk)

If a small perturbation is applied to a single state variable xk at an
equilibrium, two things may happen:
1. the perturbation affects the other state variables, however

without in turn re-affecting xk;
2. the perturbation, after some integration steps, re-affects xk.
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Dependency Graph

Dependency digraph G = (N,E)

I N is the set of the dynamic variables. |N | = n

I E ⊆ N ×N formed as

ei,j = h · ∂fi
∂xj

Definition
A simple cycle c is a simple path which starts from a root node
i ∈ N and ends with the same node, without comprising repeated
nodes. The length of a simple cycle is L+ 1, where L− 1 is the
number nodes in the cycle.

i j . . . k
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Cycle gain

Definition
The cycle gain µc of the cycle c = 〈xi, xj , . . . , xk, xi〉

µc =
∏

xi,xj∈c
ei,j = hL

∏
xi,xj∈c

∂fi
∂xj

xi xj . . . xk

ei,j ej,... e...,k

ek,i
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Cycle gain constraint

For each cycle c in the digraph, find a h such that

|µc| ≤ α ⇒ 0 < h ≤ L
√
α ·

∣∣∣∣∣∣
∏

xi,xj∈c

∂fi
∂xj

∣∣∣∣∣∣
− 1
L

where α ≥ 0.

Defining the set of cycles associated with the dynamic variable xi as

Cxi = {c ∈ C|xi ∈ c} ⊆ C
An upper bound hxi is associated with each xi as

hxi =max h

s.t. h > 0,

0 < hi ≤ L
√
α ·

∣∣∣∣∣∣
∏

xj ,xk∈c

∂fj
∂xk

∣∣∣∣∣∣
− 1
L

, ∀c ∈ Cxi .
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Cutting the model

The result of the cycle analysis is twofold
1. We know which are the variables that are mutually coupled

I Exploit this information to make the simulation parallel

2. Each variable is associated to a time scale

Example

We can cut the model accordingly to the time scales

Fast dynamics

x1: h ≤ 0.01
x2: h ≤ 0.05

Slow dynamics

x3: h ≤ 1.00
x4: h ≤ 10.0
x5: h ≤ 15.0
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Mixed-mode integration

If the model is cut in two, a mixed-mode integration can be usedxs
k+1 = xs

k + h · f
(
xs
k,x

f
k,uk

)
xf
k+1 = xf

k + h · f
(
xs
k+1,x

f
k+1,uk+1

)
with the result that

I The integration step can be larger
I The implicit method integrates a smaller system

(complexity O
(
n3
)
)

I The fast subsystem takes the slow subsystem solution as input

EE

IE

uk
xs
k+1

xf
k+1
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DC Motor

Consider a simple DC Motor
L · İ = −R · I − km · ω + u(t)
J · ω̇ = km · I − b · ω − τ(t)

ϕ̇ = ω

For a given set of parameters, the cycle analysis leads to

I : h ≤ 0.060

ω : h ≤ 0.313

ϕ : h ≤ +∞

h = 0.3
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DC Motor: Simulation results
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DC Motor: Simulation statistics

Mixed-mode BDF IE EE1

# Steps 28 136 28 162
# Function ev. 86 157 86 –
# Jacobian ev. 2 3 2 –
# Fun. ev. in Jac. ev. 4 9 8 –
# Newton iterations 58 153 58 –
Accuracy 1.118 – 1.213 10.043
Sim time 0.04s 0.05s 0.06s 0.04s

1For EE h = 0.05 for numerical stability reasons.
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Heat exchanger

Ta,i pa,i pa,o

Wall
pb,o Tb,i pb,i

L

Ta,1

Tw,1

Tb,N

We can choose N = 10, obtaining a dynamic system of order 30
For a given set of parameters, the cycle analysis leads to

Ta,j : h ≤ 10.383

Tb,j : h ≤ 13.327

Tw,j : h ≤ 13.658

h = 13.0
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Heat exchanger: Simulation results
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Heat exchanger: Simulation statistics

Mixed-mode BDF IE EE2

# Steps 38 212 38 50
# Function ev. 114 241 114 –
# Jacobian ev. 2 4 2 –
# Fun. ev. in Jac. ev. 22 120 62 –
# Newton iterations 76 237 76 –
Accuracy 0.017 – 0.014 0.059
Sim time 0.04s 0.15s 0.06s 0.08s

2For EE h = 10.0 for numerical stability reasons.
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Heat exchanger: changing α

By choosing a smaller value of α, e.g., α = 0.5, the simulation is
more accurate

Ta,j : h ≤ 5.191

Tb,j : h ≤ 6.664

Tw,j : h ≤ 6.829

h = 6.0
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Heat exchanger: Simulation statistics

Mixed-mode BDF IE EE3

# Steps 83 213 83 100
# Function ev. 234 243 243 –
# Jacobian ev. 4 4 4 –
# Fun. ev. in Jac. ev. 44 120 124 –
# Newton iterations 151 239 160 –
Accuracy 0.011 – 0.008 0.018
Sim time 0.08s 0.15s 0.16s 0.10s

3For EE h = 5.0 for numerical stability reasons.
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Heat exchanger: Simulation statistics for N = 30

Increasing N to 30, yields a system of order 90.

Mixed-mode BDF IE EE4

# Steps 125 304 125 250
# Function ev. 336 337 345 –
# Jacobian ev. 6 6 6 –
# Fun. ev. in Jac. ev. 186 540 546 –
# Newton iterations 211 333 220 –
Accuracy 0.014 – 0.014 0.084
Sim time 0.21s 0.43s 0.41s 0.20s

4For EE h = 2.0 for numerical stability reasons.
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The Dynamic Decoupling toolchain

model.mo

JModelica

model.fmu

Exporting to FMU

jd2.py
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A unifying manipulation toolchain
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Conclusion and future work

In this work we proposed
I A novel framework for the introduction of model

approximation in EOOLT
I An automatic technique for improving simulation efficiency,

i.e., Dynamic Decoupling
I The integration of the proposed technique in a classical

Modelica translator

Future work
I Cycle analysis for parallel simulation
I “Separability indices” to better automate the decoupling

process
I Co-simulation frameworks
I More complex models, e.g., smart grids
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Thank you for your attention

Questions, suggestions, comments are welcome!

Alessandro Vittorio Papadopoulos
Politecnico di Milano, Italy
(papadopoulos@elet.polimi.it)
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