

Automating Dynamic Decoupling in Object-Oriented Modelling and Simulation Tools

Alessandro Vittorio Papadopoulos and Alberto Leva

Dip. di Elettronica, Informazione e Bioingegneria Politecnico di Milano

papadopoulos@elet.polimi.it

April 19^{th} , EOOLT 2013 – @Nottingham, UK

1 Model approximation in EOOLT

- **2** Dynamic Decoupling
- **3** Application examples
- **4** A unifying manipulation toolchain

1 Model approximation in EOOLT

2 Dynamic Decoupling

3 Application examples

4 A unifying manipulation toolchain

This work is aimed at

- Introducing some "model approximations"
- to improve simulation efficiency
- in an automatic way
- in the context of Equation-based Object-Oriented Languages and Tools (EOOLT).

EOOLT are generally unsuited for the introduction of approximations

- Approximations cannot be specified at component-level
- Approximations come from properties of the whole model
- The typical manipulation toolchain does not allow approximation

EOOLT are generally unsuited for the introduction of approximations

- Approximations cannot be specified at component-level
- Approximations come from properties of the whole model
- The typical manipulation toolchain does not allow approximation
- Two different manipulations can be performed
 - 1. Acting on the continuous-time equations
 - ► MOR, Transmission Line Modelling, Neglecting Terms, Linearisation, ...
 - 2. Acting on the discrete-time solution
 - Dynamic Decoupling, Co-simulation, ...

Outline

1 Model approximation in EOOLT

2 Dynamic Decoupling

- 3 Application examples
- **4** A unifying manipulation toolchain

Dynamic Decoupling is an approximation framework divided into 2 subsequent phases

- 1. Structural (system-wide) Analysis
 - Eigenvalue Analysis
 - Cycle Analysis
 - ▶ ...
- 2. Decoupled Integration
 - Mixed-Mode integration
 - Co-Simulation
 - ▶ ...

Consider the state space form of a continuous-time ODE system

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$$

that discretised with Explicit Euler and an integration step h yields

$$\mathbf{x}_{\mathbf{k}+1} = \mathbf{x}_{\mathbf{k}} + h \cdot \mathbf{f} \left(\mathbf{x}_{\mathbf{k}}, \mathbf{u}_{\mathbf{k}} \right)$$

If a small perturbation is applied to a single state variable $x_{\bf k}$ at an equilibrium, two things may happen:

- 1. the perturbation affects the other state variables, however without in turn re-affecting $x_{\mathbf{k}}$;
- 2. the perturbation, after some integration steps, re-affects $x_{\mathbf{k}}$.

Dependency Graph

Dependency digraph G = (N, E)

- N is the set of the dynamic variables. |N| = n
- $E \subseteq N \times N$ formed as

$$e_{i,j} = h \cdot \frac{\partial f_i}{\partial x_j}$$

Definition

A simple cycle c is a simple path which starts from a root node $i \in N$ and ends with the same node, without comprising repeated nodes. The length of a simple cycle is L + 1, where L - 1 is the number nodes in the cycle.

Cycle gain

Definition

The cycle gain μ_c of the cycle $c = \langle x_i, x_j, \ldots, x_k, x_i \rangle$

$$\mu_c = \prod_{x_i, x_j \in c} e_{i,j} = h^L \prod_{x_i, x_j \in c} \frac{\partial f_i}{\partial x_j}$$

Cycle gain constraint

For each cycle \boldsymbol{c} in the digraph, find a \boldsymbol{h} such that

$$|\mu_c| \le \alpha \quad \Rightarrow \quad 0 < h \le \sqrt[L]{\alpha} \cdot \left| \prod_{x_i, x_j \in c} \frac{\partial f_i}{\partial x_j} \right|^{-\frac{1}{L}}$$

where $\alpha \geq 0$.

Cycle gain constraint

For each cycle c in the digraph, find a h such that

$$|\mu_c| \le \alpha \quad \Rightarrow \quad 0 < h \le \sqrt[L]{\alpha} \cdot \left| \prod_{x_i, x_j \in c} \frac{\partial f_i}{\partial x_j} \right|^{-\frac{1}{L}}$$

where $\alpha \geq 0$.

Defining the set of cycles associated with the dynamic variable x_i as

$$\mathfrak{C}_{x_i} = \{c \in \mathcal{C} | x_i \in c\} \subseteq \mathcal{C}$$

An upper bound \overline{h}_{x_i} is associated with each x_i as

$$\begin{split} \overline{h}_{x_i} &= \max \quad h \\ \text{s.t.} \quad h > 0, \\ 0 &< \overline{h}_i \leq \sqrt[L]{\alpha} \cdot \left| \prod_{x_j, x_k \in c} \frac{\partial f_j}{\partial x_k} \right|^{-\frac{1}{L}}, \forall c \in \mathfrak{C}_{x_i}. \end{split}$$

The result of the cycle analysis is twofold

- 1. We know which are the variables that are mutually coupled
 - Exploit this information to make the simulation parallel
- 2. Each variable is associated to a time scale

Example

We can cut the model accordingly to the time scales

$$\begin{array}{ll} x_1: & h \leq 0.01 \\ x_2: & h \leq 0.05 \\ x_3: & h \leq 1.00 \\ x_4: & h \leq 10.0 \\ x_5: & h \leq 15.0 \end{array}$$

The result of the cycle analysis is twofold

- 1. We know which are the variables that are mutually coupled
 - Exploit this information to make the simulation parallel
- 2. Each variable is associated to a time scale

Example

We can cut the model accordingly to the time scales

East dynamics	x_1 :	$h \le 0.01$
i ast uynamics	x_2 :	$h \le 0.05$
Slow dynamics	x_3 :	$h \leq 1.00$
	x_4 :	$h \le 10.0$
	x_4 :	$h \leq 15.0$

Mixed-mode integration

If the model is cut in two, a mixed-mode integration can be used

$$\begin{cases} \mathbf{x}_{\mathbf{k}+1}^{s} = \mathbf{x}_{\mathbf{k}}^{s} + h \cdot \mathbf{f} \left(\mathbf{x}_{\mathbf{k}}^{s}, \mathbf{x}_{\mathbf{k}}^{f}, \mathbf{u}_{\mathbf{k}} \right) \\ \mathbf{x}_{\mathbf{k}+1}^{f} = \mathbf{x}_{\mathbf{k}}^{f} + h \cdot \mathbf{f} \left(\mathbf{x}_{\mathbf{k}+1}^{s}, \mathbf{x}_{\mathbf{k}+1}^{f}, \mathbf{u}_{\mathbf{k}+1} \right) \end{cases}$$

with the result that

- The integration step can be larger
- ► The implicit method integrates a smaller system (complexity O (n³))
- ► The fast subsystem takes the slow subsystem solution as input

1 Model approximation in EOOLT

3 Application examples

4 A unifying manipulation toolchain

DC Motor

Consider a simple DC Motor

$$\begin{cases} L \cdot \dot{I} &= -R \cdot I - k_m \cdot \omega + u(t) \\ J \cdot \dot{\omega} &= k_m \cdot I - b \cdot \omega - \tau(t) \\ \dot{\varphi} &= \omega \end{cases}$$

For a given set of parameters, the cycle analysis leads to

$$I: h \le 0.060$$
$$\omega: h \le 0.313$$
$$\varphi: h \le +\infty$$

DC Motor

Consider a simple DC Motor

$$\begin{cases} L \cdot \dot{I} &= -R \cdot I - k_m \cdot \omega + u(t) \\ J \cdot \dot{\omega} &= k_m \cdot I - b \cdot \omega - \tau(t) \\ \dot{\varphi} &= \omega \end{cases}$$

For a given set of parameters, the cycle analysis leads to

$$\begin{array}{ccc} I: & h \leq 0.060 \\ \hline & \omega: & h \leq 0.313 \\ \varphi: & h \leq +\infty \end{array} h = 0.3$$

DC Motor: Simulation results

	Mixed-mode	BDF	IE	EE^1
# Steps	28	136	28	162
# Function ev.	86	157	86	_
# Jacobian ev.	2	3	2	_
# Fun. ev. in Jac. ev.	4	9	8	_
# Newton iterations	58	153	58	_
Accuracy	1.118	_	1.213	10.043
Sim time	0.04s	0.05s	0.06s	0.04s

¹For EE h = 0.05 for numerical stability reasons.

A.V. Papadopoulos and A. Leva, Apr. 19^{th} , 2013 @Nottingham, UK

-

Heat exchanger

We can choose N = 10, obtaining a dynamic system of order 30For a given set of parameters, the cycle analysis leads to

$$T_{a,j}: h \le 10.383$$

 $T_{b,j}: h \le 13.327$
 $T_{w,j}: h \le 13.658$

Heat exchanger

We can choose N = 10, obtaining a dynamic system of order 30For a given set of parameters, the cycle analysis leads to

$$\begin{array}{c|cc} T_{a,j}: & h \leq 10.383 \\ \hline T_{b,j}: & h \leq 13.327 \\ T_{w,j}: & h \leq 13.658 \end{array} h = 13.0$$

Heat exchanger: Simulation results

	Mixed-mode	BDF	IE	EE ²
# Steps	38	212	38	50
# Function ev.	114	241	114	_
# Jacobian ev.	2	4	2	_
# Fun. ev. in Jac. ev.	22	120	62	_
# Newton iterations	76	237	76	_
Accuracy	0.017	_	0.014	0.059
Sim time	0.04s	0.15s	0.06s	0.08s

²For EE h = 10.0 for numerical stability reasons.

By choosing a smaller value of $\alpha,$ e.g., $\alpha=0.5,$ the simulation is more accurate

$$T_{a,j}: h \le 5.191$$

 $T_{b,j}: h \le 6.664$
 $T_{w,j}: h \le 6.829$

By choosing a smaller value of $\alpha,$ e.g., $\alpha=0.5,$ the simulation is more accurate

$$\begin{array}{c|cc} T_{a,j}: & h \le 5.191 \\ \hline T_{b,j}: & h \le 6.664 \\ T_{w,j}: & h \le 6.829 \end{array} h = 6.0$$

Heat exchanger: Simulation results

	Mixed-mode	BDF	IE	EE ³
# Steps	83	213	83	100
# Function ev.	234	243	243	_
# Jacobian ev.	4	4	4	_
# Fun. ev. in Jac. ev.	44	120	124	_
# Newton iterations	151	239	160	_
Accuracy	0.011	_	0.008	0.018
Sim time	0.08s	0.15s	0.16s	0.10s

³For EE h = 5.0 for numerical stability reasons.

Heat exchanger: Simulation statistics for ${\cal N}=30$

Increasing N to 30, yields a system of order 90.

	Mixed-mode	BDF	IE	EE ⁴
# Steps	125	304	125	250
# Function ev.	336	337	345	_
# Jacobian ev.	6	6	6	-
# Fun. ev. in Jac. ev.	186	540	546	-
# Newton iterations	211	333	220	_
Accuracy	0.014	_	0.014	0.084
Sim time	0.21s	0.43s	0.41s	0.20s

⁴For EE h = 2.0 for numerical stability reasons.

1 Model approximation in EOOLT

- 2 Dynamic Decoupling
- 3 Application examples

4 A unifying manipulation toolchain

The Dynamic Decoupling toolchain

A unifying manipulation toolchain

Conclusion and future work

In this work we proposed

- A novel framework for the introduction of model approximation in EOOLT
- An automatic technique for improving simulation efficiency, i.e., Dynamic Decoupling
- The integration of the proposed technique in a classical Modelica translator

Future work

- Cycle analysis for parallel simulation
- "Separability indices" to better automate the decoupling process
- Co-simulation frameworks
- More complex models, e.g., smart grids

Prof. F. Casella and **Prof. J. Åkesson** for the useful discussions and constructive criticisms.

Thank you for your attention

Questions, suggestions, comments are welcome!

Alessandro Vittorio Papadopoulos Politecnico di Milano, Italy (papadopoulos@elet.polimi.it)

