Parallelization Approaches for the Timeefficient Simulation of Hybrid Dynamical Systems: Application to Combustion Modeling

Abir Ben Khaled (IFPEN) <u>Mongi Ben Gaid</u> (IFPEN) Daniel Simon (INRIA and LIRMM-CNRS-Université Montpellier Sud de France)

> Energies nouvelles

Motivations

- Potential improvements in computing speeds are provided by multi-core chips and parallelism
- The efficient numerical integration of systems described by equation oriented languages requires the ability to exploit parallelism
- Hardware-in-the-loop for reaching real-time
- Many applications (Engine simulating in IFPEN)

© 2013

Outline

- Motivations
- Related work
- Problem Formalization
- Parallelization across the model : speedup vs. numerical errors
- Methods of model analysis and automatic parallelization
- Case-study

© 2013 - IFP Energies nouvelles

Related work

- Waveform relaxation [Lelarasmee *et al.*]
- Transmission line modeling [Sjölund *et al.*]
- Parallelization across the solver : PVODE [Byrne et al.]
- Parallelization across the model [Faure *et al.*, Ben Khaled *et al.*]

Problem Formalization

State evolution and output equations

$$\dot{X} = f(t, X, D, U) \quad \text{for } t_n \le t < t_{t+1},$$

$$Y = g(t, X, D, U).$$

- Event detection and location
 - h(t, X, D, U) = 0.
- Event handling

$$\begin{split} X(t_n) &= I(t_n, X, D, U), \\ D(t_n) &= J(t_{n-1}, X, D, U), \end{split}$$

Requirements from previous experience

- Achieving good load balancing and avoiding idle time (adequate task scheduling)
- Minimization of the number of solvers interrupts due to discontinuities unrelated with the local sub-system (adequate model decomposition)
- Keeping an acceptable level of numerical stability and accuracy (adequate numerical methods)

Parallelization across the model

Minimize the interaction between parallel branches Clusters of computations with slacken synchronization

- Strongly dependent state variables
- Localized events location
- Avoid unrelated interrupts

Evaluation of delay errors

Delay errors depends on

- Integration step-size and delay
- System stiffness (including discontinuities)
- State variable dependencies

Feedback from previous work

- Intuitive partitioning is not effective for real cases
- Need for tools allowing the analysis of complex systems for the purpose of parallelization
- Investigating methodologies for automatic parallelization

Automatic partitioning using PaToH

(a) Row-net hypergraph representation of the matrix A and 2-way partitioning of it; (b) 2-way SB form of A induced by (a)

Exploitation of structural properties of some well chosen incidence matrices (states and/or events)

Automatic partitioning using PaToH

Exploitation of structural properties of some well chosen incidence matrices (states and/or events)

Software toolchain

Automatic extraction of relations between states and events

Case-study presentation

- Mono-cylinder engine
- Written in Modelica
- Translated to µ-Modelica
- Wiebe combustion model
- Characteristics
 - State variables: n_x = 15
 - Events: n_z = 111
 - Discrete variables: n_D = 93

Case-study state variables

ID	Name	Details
X_0	CrankAngle	Crank Shaft angle
$X_{1 \rightarrow 3}$	mEvapo[3]	Gas mass evaporated due to in- jection in global Mass balance equation
X_4	qvAlfa	Current released heat generated by the combustion process
X_5	mrefAlfa	Burned mass fraction during combustion process
<i>X</i> ₆	combuHeatRelease	Output current combustion heat released
$X_{7 \rightarrow 9}$	mCombu[3]	Gas mass derivatives due to combustion in global Mass bal- ance equation
$X_{10 \rightarrow 12}$	M[3]	Mass of gas
<i>X</i> ₁₃	Energy	Energy contained in the cylin- der
<i>X</i> ₁₄	cylinderTemp	Output temperature in the cylin- der

Derivatives of state variables X' depending on state variables X

Events Z depending on state variables X

Discrete variables D influenced by events Z

© 2013 - IFP Energies nouvelles

Derivatives of state variables X' influenced by discrete variables D

Derivatives of state variables X' influenced by events Z

Application of PaToH to event incidence matrix

This one gives an exploitable structure!

EOOLT 2013 - April, 19th 2013

Zero-crossings execution cost

Conclusions

- Theoretical analysis of the impact of slackened synchronization
- Toolchain for the analysis of hybrid dynamical systems for the purpose of their parallelization
- Candidate methods for automatic parallelization
- Illustration through a case-study

Future work

- Developing a parallel runtime
- Evaluation of the achievable speedup on the presented case-study
- Application to 4-cylinder model
- Application to human arm/hand simulation