EOOLT 2013 - 5th International Works i
Equation-Based Object-Oriented

Modeling Languages and Tools
April 19th, 2013 - University ottingldi, Notti

Modeling System Requirements in Modelica:
Definition and Comparison of Candidate Approaches

Peter Fritzson, Lena Buffoni-Rogovchenko

Andrea Tundis, Alfredo Garro
Systems Engineering and Integration Programming Environment Laboratory
(PELAB)

(SEI) Research Group

Department of Computer
Engineering, Modeling, Electronics,
and System Sciences (DIMES)

University of Calabria — ITALY

Department of Computer and
Information Science (IDA)

Linképing University - SWEDEN

SO VN,

UNIVERSITA S
DELLACALABRIA o ’th

="
—
— LINKOPINGS UNIVERSITET



Outline

] Introduction and Reference Context

- Motivations and Needs: Why?

-l Aim of the Proposal

" A Meta-Model for representing System Requirements

" Approaches for modeling System Requirements in
Modelica

" A case study

. Conclusions and Future perspectives

[ | ——
r_ ¥ Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria

2



Introduction and Context

= Functional Safety: the functional correctness of a component is the
guarantee that the component behaves the way it should and fulfills all
the functional requirements of the system in order to make it more
reliable.

= RAMS (Reliability, Availability, Maintainability and Safety): the
engineering discipline which aims at providing an integrated and
methodological approach to deal with system dependability.

= Verification&Validation: to provide support for the verification and the
validation of models of a systems engineering process in order to check
the correctness of the system by verifying the simulated behavior vs.
expected/intended behavior against requirements.

y

I
r_ Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria

3



Motivations and Needs

Maotivations:
= lack of (i) models to make requirements machine-readable and executable;

(i) methods that provide support during the Design Phase of a system
engineering process for the formalization and evaluation of requirements to

guarantee their fulfillment.

= a high risk of having to revise basic design choices with a consequent
increasing in both completion time and development cost.

Need of:

= Models for representing system requirements in a more formal way;

« Methods and techniques centered on model-based approaches able to
support the modeling, evaluation, and validation of requirements;

=« T0ols and Simulation Environments, able to make easier System Safety
analysis.

y

I
r_ Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 4



Modrio project (WP2) — ITEA 2

©) scaNIA |
. @ e
L :eDF EA\DS

S [ NIVERSITA

S==y DELLACALABRIA 4 passaur
WP2 involved >
partners /?,%%%sr v L MS

DAL=
DLR LINKOPINGS UNIVERSITET It.
\ WOLFRAM MATHCORE

WP2’s Objectives:

= Formalization of system requirements;
Definition of methods for Safety Analysis of physical systems.

y

I
r_ Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 5



Aim of the Proposal

General Goal

= (i) to develop a comprehensive approach for the definition and modeling
of requirements of a physical system in a more formal way;

= (i) to define a mechanism to enable their traceability in order to support
the verification process through simulation.

Proposal

= A meta-model to represent system requirements;

« Approaches to model them in an equation-based context;

= Some extensions of the Modelica language are introduced,

= Implementation in OpenModelica (Open Source).
OpenModelica

Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria



A meta-model for modeling System
~Requirements as RequirementAssertions

Equation Function FiniteAutomata | ComplexAttribute | | AtomicAv ib Counter 0.1

' ' ' Attribute
kvd
Behavior 1 ComputationalModel .
- F Description
+ +
1
1 ) IIRIR IR T
* - -
PhysicalComponentModel RequirementAssertion
+ fulfill

Simple
RequirementAssertion

tusOfActivation 1

+
1 1 Timestamp | *
EquationsSet Other Algorithm
DefaultStatus 0.1 1
+
+ .

StatusType
1

Status 1

StatusValue

Requirement
Model

1) RequirementAssertion
Type

1 (0.1 T T T T
Value

T
PhysicalSystemllodel Visibility | Unit || Type || Variability| Name
abled Disabled

* % 1 0.1 ‘ !
PreConditions
) | | I | |

PhysicalSystem | Publid | Protected Private | Constant| Parameter| Variable

RangeOfValue 1

Concepts of the reference meta-model for the
Requirement Meta-Model

1 0..1
= Concepts of the reference meta-model for both
the Physical and the Requirement Meta-Models

Physical Meta-Model

y

r_

EvaluationPeriod 1

1 | Measure

_ Concepts of the reference meta-model for the 111
Physical Meta-Model 0.1
UpperBo UpperBoundOffSet

LowerBiyndThreshold | LowerBoundOffSet

1 | Metric Default Parameterized

1
0.1 ‘ Pattern
PostConditions

*
1
ComputationalModel

1 +
-—

EquationsSet FiniteAutomata | Other

iy

Equation Algorithm Function

4

equirement Meta-Mode

Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria



A meta-model for modeling System
Requirements as RequirementAssertions

Main Concepts:

= requirement. which is represented by a
RequirementAssertion able to validate the behavior
of a specific PhysicalComponentModel which is
related to, or to validate interactions among different
PhysicalComponentModels

« fulfill: which expresses the entailment relationship

fulfill

Requirement
Assertion .

FiN fulfill

*® w

Complex Simple

between  PhysicalComponentModels  and @ ReguirementAssertion  ReguirementAssertion

RequirementAssertion, as well as among
RequirementAssertions. Fulfill  provides the
propagation process of an assessment among
RequirementAssertions.

Ex. PhysicalComponentModel ¢1, ¢2, ¢3;
RequirementAssertion ral, ra2, ra3;

cl fulfill ral; - ral Complex
ral fulfill ra2; 2 ra2 Simple
c2, c3, raz2, fulfill ra3. = ra3 Complex

yo=r

L]

fulfill

+

thslcalﬂnmpmentﬂﬂdel

1

'
Attribute

Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 8



A meta-model for modeling System
Requirements as RequirementAssertions

ComputationalModel:
it defines the Behavior of a PhysicalComponentModel;
It is used to express a Measure of a RequirementAssertion.

Pattern
=
- 1 AtomicAttribute
Measure { . ComputationalModel
b
1 ra
EquationsSet | | =
EquationsSet FiniteMachine Other a
Behavior 1
.I.

Equation Algorithm Function

y

I
r_ Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 9



A meta-model for modeling System
Requirements as RequirementAssertions

. Counter
Status: in order to represent the f-1 1 status 1 | StatusType
status of fulfillment of the e |
requirement, which in turn is 1 StatusValue
defined in terms of a StatusType Defaultstans.- =1 1 1
and a StatusValue. Nk
Description 01 1 Requirement 1 Name
Assertion 1
Each Status could have:
. i t
a Counter counting how many = “”‘.‘::a":.‘“ !

times the RequirementAssertion
has gone in a specific state

and a Timestamp in order to
register each occurrence of the
event.

Each RequirementAssertion is characterized by a Name and a possible Description
In a text format by using the natural language,;

y

I
r_ Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 10



A meta-model for modeling System
Requirements as RequirementAssertions

StatusOfActivation: a RequirementAssertion can be Enabled and e
Disabled in order to decide if it takes/doesn’t take part in a specific . Assertion
scenario or simulation run;

EvaluationPeriod: to indicate when the RequirementAssertion
has to be evaluated according to possible PreConditions and
PostConditions

_ StatusOfActivation 1 1] 1 | 1
Metric: to describe the objective to be ; v .
verified for which the RequirementAssertion  ———— EvaluationPeriod 1 Metric
has been defined (e.g. MTTF); Enabled Disabled

0.1 | ! 0..1 | ! !

It has to define a way which objectively PraConditions PostConditions

allows its evaluation in terms of Measure
(e.g. the MTTF can be meseasured as
number of failures in a period of time). | RangeOfvalue 4 1 | Measure

y

I
r_ Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 11



Approaches for Modeling System
Requirements in Modelica

= They are based on the two main concepts of RequirementAssertion and Fulfill as
stated into the proposed meta-model.

connect

COﬂﬂGCi

r_

<<Requirement
Assertion>>

AO

fulfill

<<Req um

fulfill

Assertion>>

A;/

fulfill

C1

<<PhysicalComponent>>

connect

connect

Wﬁon»
A2

Approach A

<<Requirement

fulfill

y

<<PhysicalComponent>> | connect

C2 - I

Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 12



Exploiting the Approach A: a Case Study

An example of scenario

SystemDesign [Tank System]
o ! «Requirement »
«( »
source «fulfill» | «Requirement » ControlLevel
| Itevel<tmax
liquidFlow and
S { liquidFlow<=maxLevel ILevel>Lmin
iquidFlow s ~——
qln | . «fulfill»
Mty (
Tank r =i B ler «fulfill» «Requirement >
' ~1 ControlOutFlow
_ tActuator «connect» c0ut'~
— outFlow=alfa*
- | «connect» (levell -
h outFlowArea levell | h_offset);
[ «connect» 1
| outFlow
«connect»
actuatorController L «Requirement »
=A | ActuateOutFlow
out. rea
flroommegt> S T outtiowareas  |<ulfill>)
«fulfill» actuatorController
qln «connect» sensorOutput | .
b Sink «fulfill» I«g:::fxgt» «fulfill»
ILevel |

-~

l ILevel=sensorOuput

i
ll
\

Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 13



How does the Source Code look like?

1 model ExtendedSystemDesign
/ /PhysicalComponentModels
> Source source;

model Scurce;
LicquidFlow goOut;
parameter Real flowLevel=0.02;

equation

gout.lflow = if time>150 the

3*flowLevel else flowlLevel;

//RequirementComponents
equirementl limitInFlow;

equation
//Connection among PhysicalComponents
connect (source.gOut, tankl .gIn):;

» RequirementAssertion I: LimitInFlow, which takes
in input the value of the gQut port of the Source
component. It is satisfied if the liquid flow produced
by the Source component is less than a specific
“maxLevel” (ie. liquidFlow<=maxLevel in our case
maxLevel =10).

fulfill (contrcllevel) ;

(levelController, actuateCutFlow,
senselevel)fulfill (controloutFlow) ;
//connection between physical

//components and requirements

connect (socurce.gOut, limitInFlow. :}_

regdirement Requirementl

Real licuidFlow; "gOut of

///' parameter Real maxlevel=10;
equation |

if liquidFlow<=maxLevel then

Status.satisfied;

nd Requirementl;

liquidFlow) ;
connect (tankl.h,senselevel.llevel)

end ExtendedSHstemDesign;

Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 14



Approaches for Modeling System
Requirements in Modelica

Approach B: Itis a variant of the previous approach to avoid the exploitation of the

construct of “connect” between RequirementAssertion component and Physical
Component.

Beside to keyword requirement, the On-keyword is introduced. “On” allows a

RequirementAssertion to be defined on a specific model and by inheriting their
attributes, on which it will carry out processing.

Requirement
Assertion

SystemReqo
T furin

Requirement ' Tulfill Requirement "
' Assertion < ' Assertion
S}vstemm/ql/ WEqQ

I\ I\

fulfill fulfitl

/

connect | <««PhysicalComponentModel» | connect | ((PhysicalComponentModel»» | connect

i PhysicalComponentl i i PhysicalComponent2 ]

y

N[
Il

Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 15



How does the Source Code look like?

ndel Source;
LicquidFlow goOut;

model ExtendedSystemDesign
//PhyvsicalComponentModels
ource source;

equation
gout.lflow = if time>150 ths
J*flowlLevel else flowleve

//RequirementComponents
Requirementl limitInFlow:

» RequirementAssertion I: LimitInFlow. which takes
in input the value of the gQut port of the Source
component. It is satisfied if the liquid flow produced
by the Source component is less than a specific
“maxLevel” (i.e. liguidFlow<=maxLevel in our case
maxLevel =10).

qkﬁE;’E;;;:rementM;;;I-\\\\\\

qulrement Requirementl On Scuqu
parameter Feal maxlevel=10;
equation
if Source.gOut<=maxLevel then
Status.satisfied;

.

en equirementl;

quation

//Connections among PhysicalComponents
connect (source. gout, tankl .gIn):;

senselevel) fulfill (controlCutFlow) ;

(limitInFlow,controlOutFlow)
fulfill (controllevel);

end ExtendedSystemDesign;
NO
connect (PhysicalComponent, RequirementComponent)

N[
il

¥ Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 16



Exploiting the Approach B: a Case Study

N

SystemDesign [ Tank System]

«Requirement» «Requirement»
e «fulfill>» LimitInFlow «fulfill» ControlLevel
qOut
gIn wcomect” «fulfill»
cIn
Tank AL LevelController ¢, 15ill>» «Requirement»
«connect» Out ControlOutFlow
tActuator
«connect»
qOut h outFlowArea
«Requirement>»
ActuateQuiFlow
«connect» «fulfill» «fulfill»
qln|.
Sink
<<fll|ﬁ“>> «Requirement>» <<fll|ﬁ||>>
Senselevel

h

Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria

17



Modeling Dysfunctional Behavior and
Scenarios

‘ Approach C: This approach takes into account the possibility of considering the feature '
of altering the values, as well as provide parameters setting of particular scenarios, of
the components by extending the previous approaches.

Requirement
Assertion
SystemReqo0
kD
fulfill
Requirm fulfill Requirement '
‘€ Assertion < €€ Assertion
SystemReq1 e
L A
fulfill fulfill
connect | «(PhysicalComponentModely» | connect | ((PhysicalComponentModely | connect
PhysicalComponentl i L] PhysicalComponent2 i
A
supersede supersede
((Tester» ((Tester»
TesterComponentl TesterComponent2

i
ll
\

Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 18



Modeling Dysfunctional Behavioral and
Scenarios

<<Requirement

ssertion>> RO

fulfill

<<Requiremm fulfil <<Requirement
Assertio‘nw Wn»

connect connect
fulfill fulfill
connec <<class>> connedt _ <<class>> connect
—i PhysicalComponent [ | PhysicalComponent
C1 C2
superseds ‘ Parameters Setting subersedd ‘ Fault injection
Scenario P Scenario
<<Tester>> <<Tester>>
Component Component
T1 T2
 —
r_—’ Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 19



Dysfunctional Behavioral Modeling

An example of
Dysfunctional scenario

<<Requirement
Assertion>>R0

fulfill

<<Requiremm fulfil <<Requirement

Assertio’nw Wn»
connect connect
fulfill fulfill
connec <<class>> connedit PhsycalComponent | ... nect
—i PhysicalComponent [ L] C2
C1l Currupted!!
Fault injection
supersede .
Scenario
<<Tester>>
Component
T2

y

N

Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 20



Dysfunctional Behavioral Modeling

An example of
Dysfunctional scenario

<<Requirement

ssertion>> RO

fulfill

<<Requiremm fulfil

Assertion>R1
connect connect
fulfill fulfill
connec <<class>> connegt PhsycalComponent | . .nect
—i PhysicalComponent [ L] C2
C1l Currupted!!
Fault injection
supersede )
Scenario
<<Tester>>
Component
T2

y

N

Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 21



Dysfunctional Behavioral Modeling

<<Requirement AN example of :
Dysfunctional scenario

Assertion>> RO

fulfill
fulfill

connect
fulfill fulfill

connect

<<class>> connedt PhsycalComponent

connec connect
—i PhysicalComponent [ L] C2 —
C1l Currupted!!

‘ Fault injection
Scenario

supersede

<<Tester>>
Component
T2

y

N

Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 22



Dysfunctional Behavioral Modeling

An example of
Dysfunctional scenario

fulfill

fulfill

connect
fulfill fulfill

connect

<<class>> connedt PhsycalComponent

connec connect
—i PhysicalComponent [ L] C2 —
C1l Currupted!!

‘ Fault injection
Scenario

supersede

<<Tester>>
Component
T2

y

N

Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 23



Exploiting the Approach C: a Case Study

« 3 Tester components

SystemDesign [Tank System]

«Tester» «Tester»
AlterSourceFlow AlterSourceFlow?2
«supersede» «supersede»
e «Requirement>» «Requirement>»
«Fulfill» LimitInFlow | .fylfills> ControlLevel
«Tester»
AlterqOut
qOut
«connect>»
«supersede» I «fulfill>»
qln
tSensor cIn
Tank e LevelController <Requirements
tActuator cOut |«fulfill>>| ControlOutFlow
«connect» =
qOut h outFlowArea
«Requirement»
ActuateQutFlow
«connect>» «fulfill» «fulfill»
qln
Sink «fulfill» | «Requirement» «Fulfill>»
— Senselevel

i
ll
\

Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria

24



How does the Source Code look like?

ge PhysicalComponentMode
odel Source;

LicquidFlow gQut:

parameter Eeal flowLevel=0.02Z;
equation

gout.lflow = if time>150 then
3*fl owLevel else flowlevel;

model ExtendedSvstemDesign

/ /PhvysicalComponentModels
Tank tankl (area=1);
Source source;

21

/ /RequirementComponents

;ﬁgter AlterSourceFlow On Sour&é\

//TesterComponents
// parameter Real flowLevel=0.04;

AlterScurceFlow alterSourceFlow;
AlterScurceFlow? alterScurceFlow?;
AlterCut alterout;

equation

/ /supersede relationships
(alterScurceFlow,

equation
gqout .1flow=flowlLevel ;
nd Al terScurceFlow;

rout On Tank

alterSourceFlowi) supersede (source) ;
(alterout) supersede (tankl);

ation
actuatorControllerv=-
flowGain*tActuator.act;
gqOut.1flow = actuatorControllerV;
tSenscor.val = h;

cutFlowArea=—qgout.lflow/flowGain;
Al terout;

//fulfill relationships

end ExtendedSystemDesign;

Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 25



Conclusions and Future perspectives

Contribution:

v Areference Meta-model for representing System Requirements in terms of
RequirementAssertions has been defined.

v Possible extensions of the Modelica language: new concepts and keywords,
such as requirement and fulfill for supporting the verification of models as
well as supersede and tester for parameters setting of scenarios, have been
introduced.

<

Three approaches for the modeling of System Requirements that adhere to
the proposed meta-model, have been outlined.

Ongoing and future works:

Improvement of Modelica extensions and their implementation in
OpenModelica for the verification and validation of models;

Definition and implementation of OpenModelica API for enabling Fault Tree
Analysis;

Definition of a Methodology for supporting the Modeling and the Validation
process of physical systems.

y

m . . .

I
r_ Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 26



Thank you!

atundis@dimes.unical.it

y

N

Andrea Tundis - SEI Research Group - DIMES Department - University of Calabria 27



