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Mathematical Preliminaries
Tensors

V ... n-dimensional vector space consisting of vectors (column vectors)
V∗ ... dual space of V consisting of covectors (row vectors)

A multi-linear map
(V∗)p × Vq → R

is called p-covariant q-contravariant tensor, or, (p, q)-tensor.
The set Vp

q of (p, q)-tensors on V is a vector space.

Isomorphisms:

V0
0
∼= R (scalars)

V1
0
∼= V (vectors)

V0
1
∼= V∗ (covectors)

V1
1
∼= V⊗ V∗ (matrices)
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Mathematical Preliminaries
Tensor fields

M . . . n-dimensional smooth manifold
TxM . . . tangent space at x ∈M
T ∗xM . . . cotangent space at x ∈M
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Mathematical Preliminaries
Tensor fields

M . . . n-dimensional smooth manifold
TxM . . . tangent space at x ∈M
T ∗xM . . . cotangent space at x ∈M

A (p, q)-tensor field S is a map

(point) M3 x 7→ S(x) ∈ TxMp
q (p, q)-tensor

Special cases:

S(x) ∈ TxM0
0
∼= R . . . S is a scalar field

S(x) ∈ TxM1
0
∼= TxM . . . S is a vector field

S(x) ∈ TxM0
1
∼= T ∗xM . . . S is a covector field
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Mathematical Preliminaries
Flow of a vector field and Lie derivative of a scalar field

The flow ϕt of a vector field f is the general solution of the ODE

ẋ(t) = f(x(t))

The Lie derivative of the scalar field h :M→ R along f is given by

Lfh(x) :=
d
dt
h(ϕt(x))

∣∣∣∣
t=0

= h′(x) · ϕ̇t(x)|t=0 = h′(x) f(x)
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Mathematical Preliminaries
Flow of a vector field and Lie derivative of a scalar field

Automonous system with vector field f and scalar field h

ẋ(t) = f(x(t))
y(t) = h(x(t))

Lie derivative of the scalar field h along f

Lfh(x) := ẏ(0) =
d
dt
h(x(t))

∣∣∣∣
t=0

=
∂h(x)
∂x

f(x)

Higher order Lie derivatives

L2
fh(x) := ÿ(0) =

∂Lfh(x)
∂x

f(x)

Lie series (Taylor series, coeffients: Lie derivatives)

y(t) = h(ϕt(x0)) =
∞∑

k=0

Lk
f h(x0)

tk

k!
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Mathematical Preliminaries
Different types of Lie derivatives

Different Lie derivatives along a vector field f :M⊆ Rn → Rn:

Lie derivative of a scalar field h :M→ R

Lfh(x) = h′(x)f(x)

Lie derivative of a vector field g :M→ Rn (Lie bracket):

Lfg(x) = adfg(x) = [f ,g](x) = g′(x)f(x)− f ′(x)g(x)

Lie derivative of a covector field ω :M→ (Rn)∗:

Lfω(x) = fT (x)
(
∂ωT

∂x

)T

+ ω(x)
∂f(x)
∂x
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Algorithmic Differentiation
Approaches to compute derivatives

Symbolic differentiation

Efficient for lower order derivatives

Exponential expression growth higher order derivatives

Time-consuming computations

Numeric differentiation

Finite differences such as

F (x+h)−F (x)
h or F (x+h)−F (x−h)

2h

may result in large errors (cancellation, trunction)

Not applicable for higher order derivatives!

Automatic/Algorithmic differentiation

Systematic application of elementary differentiation rules with
chain rule

Intermediate values are floating point numbers

No truncation errors (exact w.r.t. floating point numbers)
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Algorithmic Differentiation
Forward mode (example)

Example: z = F (x, y) = [sin(xy) + x] · [sin(xy)− y]
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Algorithmic Differentiation
Forward mode (implementation in C++, sketch)

Replace floating point type double by a new class, e.g. ddouble:

Overload all operations for additional derivative calculation:
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Algorithmic Differentiation
Reverse mode (example)

Example: z = F (x, y) = [sin(xy) + x] · [sin(xy)− y]
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Algorithmic Differentiation
Reverse mode (example)

Example: z = F (x, y) = [sin(xy) + x] · [sin(xy)− y]
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Algorithmic Differentiation
Taylor coefficients

Smooth map F :M⊆ Rn → Rm and truncated Taylor series

x(t) = x0 + x1t+ x2t
2 + · · ·+ xdt

d +O(td+1), xk = 1
k!x

(k)(0)

z(t) = F(x(t)) = z0 + z1t + z2t
2 + · · ·+ zdt

d +O(td+1), zk = 1
k!z

(k)(0)

with coefficient vectors x0, . . . ,xd ∈ Rn and z0, . . . , zd ∈ Rm with

z0 = F(x0)
z1 = F′(x0)x1

z2 = F′(x0)x2 + 1
2 F′′(x0)x1 x1

z3 = F′(x0)x3 + F′′(x0)x1 x2

+ 1
6 F′′′(x0)x1 x1 x1

...

zk ≡ zk (x0 . . . ,xk)

x0

F′(x0)

F

RmM⊆ Rn

z0

x(t) z(t)

x1
z1
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Algorithmic Differentiation
Computation of Taylor coefficients in the forward mode

Storage: Replace double by a new class tdouble

Calculation: Overloading elementary operations

z = x± y ⇒ zk = xk ± yk

z = x · y ⇒ zk =
k∑

i=0
xi · yk−i

z = x/y ⇒ zk = 1
y0

(
xk −

k∑
i=1

yixk−i

)
(k ≥ 1)

z = ex ⇒ zk = 1
k

k−1∑
i=0

(k − i)zixk−i (k ≥ 1)

z = ln(x) ⇒ zk = 1
x0

(
xk − 1

k

k−1∑
i=1

izixk−i

)
(k ≥ 1)

Tools: ADOL-C (Germany); TADIFF, FADBAD++ (Denmark)
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Algorithmic Differentiation
ADOL-C: Automatic Differentiation by OverLoading in C++
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Computation of Lie Derivatives
Taylor series expansion of the flow

Initial value problem

ẋ(t) = f(x(t)), x(0) = x0 ∈M ⊆ Rn

with vector field f :M→ Rn. Series expansions:

flow: x(t) = ϕt(x0) = x0 + x1t+ x2t
2 + · · ·+ xdt

d +O(td+1)
map: z(t) = f(x(t)) = z0 + z1t+ z2t

2 + · · ·+ zdt
d +O(td+1)

Since

ẋ ≡ z

we have

xk+1 =
1

k + 1
zk

x1 x2 x3

z0 z1 z2

x0

identity ẋ(t) ≡ z(t)

map z(t) = f(x(t))
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Computation of Lie Derivatives
Iterated Lie derivatives of a scalar field

Consider the autonomous system

ẋ(t) = f(x(t)), y(t) = h(x(t)), x(0) = x0 ∈M ⊆ Rn

with f :M→ Rn and h :M→ R.
The Taylor coeffients x1, . . . ,xd ∈ Rn and y0, . . . , yd ∈ R can be
computed with the forward mode of automatic differentiation:

flow: x(t) =ϕt(x0) =x0 + x1t+ x2t
2 + · · ·+ xdt

d +O(td+1)
output: y(t) =h(ϕt(x0)) = y0 + y1t+ y2t

2 + · · ·+ ydt
d +O(td+1)

Iterated Lie derivatives of the scalar field h along the vector field f :

y(t) = h(ϕt(x0)) =
∞∑

k=0

Lk
f h(x0)

tk

k!
=⇒ Lk

f h(x0) = k! yk
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Computation of Lie Derivatives
Iterated Lie derivatives of a scalar field

C interface of LIEDRIVERS library:

Also supported:

Simulaneous computation for multiple scalar fields

Gradients of Lie derivatives of scalar fields

Lie derivatives of vector fields and covector fields

C++ interface
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Applications in Nonlinear Control
Nonlinear control systems

We consider computational problems occurring in controller and
observer design for nonlinear control systems

ẋ(t) = f(x(t)) + g(x(t))u
y(t) = h(x(t))

with

state x(t) ∈M ⊆ Rn (open subset)

input u(t) ∈ R

output y(t) ∈ R

and

f ,g :M → Rn (vector fields)

h :M → R (scalar field)

Klaus Röbenack LIEDRIVERS — A Toolbox for Lie Derivatives



Applications in Nonlinear Control
Applications of Lie derivatives in nonlinear control

Exact input-output linearization (Byrnes; Isidori):

h(x), Lfh(x), . . . , Lr
fh(x), LgL

r−1
f h(x), r . . . relative degree

Exact input-state linearization (Byrnes; Isidori):

g(x), adfg(x), . . . , adn−1
f g(x)

High-gain observer (Gauthier, Hammouri, Othman):

ω(x) := h′(x), Lfω(x), . . . , Ln−1
f ω(x)

Extended Luenberger observer (Bestle, Zeitz):

v(x), ad−fv(x), . . . , adn
−fv(x) with 〈Lk

f ω(x),v(x)〉 = δk,n−1
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Summary and Outlook

Summary

Computation of typical types of Lie derivatives based on
algorithmic differentiation

Suitable for complex equation based models (branches, loops,
encapsulation, ...)

C interface for micro controller implementations

Outlook

Native integration in ADOL-C

Specialized functions for nonlinear control
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