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Mathematical Preliminaries
Tensors

V ... n-dimensional vector space consisting of vectors (column vectors)
V* ... dual space of V consisting of covectors (row vectors)

A multi-linear map
(V)P x VI - R

is called p-covariant g-contravariant tensor, or, (p, q)-tensor.
The set V2§ of (p, q)-tensors on V is a vector space.

Isomorphisms:

V) 2 R (scalars)
\ =Y (vectors)
V) o~ v (covectors)
Vi 2 VeV (matrices)
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Mathematical Preliminaries

Tensor fields

M ... n-dimensional smooth manifold
TxM ... tangent space at x € M
T:M ... cotangent space at x € M

TxM tangent
space

n-dimensional

coordinate manifold

chart

open subset
of R™

local coordinates
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Mathematical Preliminaries
Tensor fields

M ... n-dimensional smooth manifold
TxM ... tangent space at x € M
TiM ... cotangent space at x € M

A (p, q)-tensor field S is a map
(point) M > x = S(x) € TeM? (p, q)-tensor

Special cases:

S(x) € M) =R ... Sis a scalar field
S(x) € TM§=TueM ... Sisa vector field
S(x) e LMy =TsM ... Sisa covector field
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Mathematical Preliminaries
Flow of a vector field and Lie derivative of a scalar field

The flow ¢, of a vector field f is the general solution of the ODE
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Mathematical Preliminaries
Flow of a vector field and Lie derivative of a scalar field

The flow ¢, of a vector field f is the general solution of the ODE

The Lie derivative of the scalar field h : M — R along f is given by

Lih(x) = ghiao)| =
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Mathematical Preliminaries
Flow of a vector field and Lie derivative of a scalar field

Automonous system with vector field f and scalar field h
() = f(x(1))
y(t) = h(x(t))

Lie derivative of the scalar field h along f

Len() == 5(0) = Shixr)| = 20 g
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Mathematical Preliminaries
Flow of a vector field and Lie derivative of a scalar field

Automonous system with vector field f and scalar field h

%() = £(x(1)
y(t) = h(x(t)

Lie derivative of the scalar field h along f

Leh(x) = j(0) = ph(x(t)| =22 (x)

Higher order Lie derivatives

Lih(x) = §(0) = =5 £(x)
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Mathematical Preliminaries
Flow of a vector field and Lie derivative of a scalar field

Automonous system with vector field f and scalar field h

%() = £(x(1)
y(t) = h(x(t)

Lie derivative of the scalar field h along f

Leh(x) = §(0) = S h(x(®)| = T ()
Higher order Lie derivatives

£2h(e0) = i(0) = 2O g

Lie series (Taylor series, coeffients: Lie derivatives)
y(t) = h(p(x0)) ZLf Xo
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Mathematical Preliminaries
Different types of Lie derivatives

Different Lie derivatives along a vector field f : M C R"” — R™:
@ Lie derivative of a scalar field h : M — R
Leh(x) = W (x)(x)
@ Lie derivative of a vector field g : M — R™ (Lie bracket):
Leg(x) = adeg(x) = [£, 8] (x) = g ()F(x) — £ (x)g(x)
@ Lie derivative of a covector field w : M — (R™)*:

wl\ 7" X
Lew(x) = 1 (x) <88x> + w(x) ag(x)
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Algorithmic Differentiation
Approaches to compute derivatives

Symbolic differentiation
o Efficient for lower order derivatives
@ Exponential expression growth higher order derivatives
@ Time-consuming computations
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Algorithmic Differentiation
Approaches to compute derivatives

Symbolic differentiation
o Efficient for lower order derivatives
@ Exponential expression growth higher order derivatives
@ Time-consuming computations
Numeric differentiation
e Finite differences such as

F(z+h)—F(x F(z+h)—F(x—h
( })L @) o ( )Qh( )

may result in large errors (cancellation, trunction)
@ Not applicable for higher order derivatives!
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Algorithmic Differentiation
Approaches to compute derivatives

Symbolic differentiation
o Efficient for lower order derivatives
@ Exponential expression growth higher order derivatives
@ Time-consuming computations
Numeric differentiation
e Finite differences such as

F(z+h)—F(x F(z+h)—F(x—h
( })L @) o ( )Qh( )

may result in large errors (cancellation, trunction)
@ Not applicable for higher order derivatives!
Automatic/Algorithmic differentiation

@ Systematic application of elementary differentiation rules with
chain rule

@ Intermediate values are floating point numbers
@ No truncation errors (exact w.r.t. floating point numbers)
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Algorithmic Differentiation

Forward mode (example)

Example: z = F(z,y) = [sin(zy) + z] - [sin(zy) — y]

F
T 3.0
Y 4.0
v1T = Xy 12.0
vy = sin(vy) | -0.5366
V3 = U+ 2.4634
Vg = V2 —Y -4.5366
Vs = V3 *U4q -11.1755
z = Us -11.1755
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Algorithmic Differentiation

Forward mode (example)

Example: z = F(z,y) = [sin(zy) + z] - [sin(zy) — y]

F OF/0x
x 3.0 T 1.0
y 4.0 i 0.0
v1 = XY 12.0 U1 = Y+ YT 4.0
vy = sin(vy) | -05366 || v = ©7cos(vy) 3.3754
v = V4T 24634 || 03 = Vo + % 4.3754
Vg = U —Y 45366 || v4 = U2 —Y 3.3754
v = w3-U4 | -11.1755 || U5 = U3v4 + V4v3 | -11.5345
z = vg 411755 || 2 = s -11.5345
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Algorithmic Differentiation

Forward mode (example)

Example: z = F(z,y) = [sin(zy) + z] - [sin(zy) — y]

F OF/0x | OF/0y
x 3.0 z 1.0 0.0
y 4.0 ¥ 0.0 1.0
v], = Iy 12.0 U1 = TYy+yzT 4.0 3.0
vy = sin(vy) | -05366 || v = ©7cos(vy) 3.3754 | 2.5316
vy = vt 24634 || U3 = Vgt & 4.3754 | 2.5316
vg = vUy—Yy | -45366 || 04 = UV2—Y 3.3754 | 1.5316
vs = vUz-vg | -11.1755 || 05 = O3v4 + Oqv3 | -11.5345 | -7.7119
z = vs 4114755 || 2 = 03 -11.5345 | -7.7119
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Algorithmic Differentiation

Forward mode (implementation in C++, sketch)

Replace floating point type double by a new class, e.g. ddouble:

class ddouble

{
public:
double val; // function value
double der; // derivative value
s

Overload all operations for additional derivative calculation:
ddouble operator *x (ddouble x, ddouble y)

{

ddouble z;

z.val = x.valxy.val;

z.der = x.valxy.der+y.valxx.der;
}
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Algorithmic Differentiation

Reverse mode (example)

Example: z = F(z,y) = [sin(zy) + z] - [sin(zy) — ]

z=3.0
y=4.0
v =x*xy=12.0
vy = sin(vy) = —0.5366
v3 = vy + o = 2.4634
vy = vy —y = —4.5366
v = v3 *x Vg = —11.1755
z=uv5=-—11.1755

computation of
function value
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Algorithmic Differentiation

Reverse mode (example)

Example: z = F(z,y) = [sin(zy) + z] - [sin(zy) — ]

z=3.0
y=4.0
v =x*xy=12.0
vy = sin(vy) = —0.5366
v3 = vy + o = 2.4634
vy = vy —y = —4.5366

computation of

funclt)ion value v = vz * vy = —11.1755
z=wv; = —11.1755
95 =z2=10

U3 = U5 * v4 = —4.5366
Uy = U5 *x v3 = 2.4634

. . Vg = Vg4 = 2.4634
computation of
derivative 37 = -7y = —2.4634
= Uy + 3 = —2.0732

U1 = U cos(vl)zfl 7495
F=F+0 +y=—11.5346
J=7+0 xx=-7.7119
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Algorithmic Differentiation
Taylor coefficients

Smooth map F : M C R™ — R™ and truncated Taylor series

X(t) = X9 +x1t + X2t2 4+ thd + (Q(td—&-l)7 Xp = %X(k) (O)
z(t) = F(x(t)) = 2o + 21t + 228> + -+ + 2qt? + O(t1), 2 = £z (0)
with coefficient vectors xq,...,Xxq € R" and zg,...,zq € R™ with
Z F XO) .
= N Fl(xo)
zZ, = F (Xo) , X1 . 0 21
zo = F/(x0)x2+ % 5 F/(x0) x1 x1 : ’,
23 = F(x0) %3+ F"(x0) x1 % | xo\/ 7o
+ 5 F”(x0) x1 X1 X1 ol TR e S
\\\ /,' \‘ ///
MCR" : R™
zr, = 2z (X0...,Xg)

Klaus Rébenack LIEDRIVERS — A Toolbox for Lie Derivatives



Algorithmic Differentiation

Computation of Taylor coefficients in the forward mode

Storage: Replace double by a new class tdouble

#include <vector>
class tdouble : public std::vector <double >;
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Algorithmic Differentiation

Computation of Taylor coefficients in the forward mode

Storage: Replace double by a new class tdouble

#include <vector>
class tdouble : public std::vector <double >;

Calculation: Overloading elementary operations

z=xty = 2k =T £ Yk
k
2=y = 2= )T Yk
i=0
. k
z=ux/y = 2k =55 <:L'k - yixki> (k>1)
i=1
k—1
z=é€" = z =1 > (k—i)zimp—; (k>1)
i=0
k—1
z = In(x) = 2 = % Tp—1 > izixk_i> (k>1)
i=1
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Algorithmic Differentiation

Computation of Taylor coefficients in the forward mode

Storage: Replace double by a new class tdouble

#include <vector>
class tdouble : public std::vector <double >;

Calculation: Overloading elementary operations

z=xty = 2k =T £ Yk
k
Z=x-Y = 2= )T Yk
i=0
. k
z=ux/y = 2k =55 <:L'k - yixki> (k>1)
i=1
k—1
z=é€" = z =1 > (k—i)zimp—; (k>1)
i=0
k—1
z = In(x) = 2 = % <:ck - > izixk_i> (k>1)
i=1

Tools: ADOL-C (Germany); TADIFF, FADBAD++ (Denmark)



Algorithmic Differentiation

ADOL-C: Automatic Differentiation by OverLoading in C++

C++ Source Drivers
z = sqrt(x1) + pow(x2,3); forward(tag,m,n,d, keep, X, Z)
reverse(tag,m,n,d,z,A)
L Modification by user gradient(tag,n,x,g)
hessian(tag,n, x,H)

Modified C++ Source Taylor coefficients
adouble ax1, ax2, az; Adjoints
trace_on(); Gradient
x1>>ax1l; x2>>ax2; )

Hessian

az = sqrt(axl) + pow(ax2,3);
z<<az;
trace_off();

Working on

Compilation and
execution produces:

A4
‘ Tape

Trace of operations and evaluations
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Computation of Lie Derivatives
Taylor series expansion of the flow
Initial value problem

x(t) = f(x(t)), x(0)=xp€ M CR"

with vector field f : M — R"™. Series expansions:

flow: x(t) = ¢i(x0) = X0+ X1t + xot? + -+ + xgt¢ + O(4H1)
map: z(t) = f(x(t)) = zo+zit+ zot? + - + zgt? + O(tH))
Since
X0 X1 X2 X3
X=z —
e () = £(x()
we have —
identity x(t) = z(¢)
1 Zg z1 Z2
X1 = n 1%k
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Computation of Lie Derivatives
Iterated Lie derivatives of a scalar field

Consider the autonomous system
x(t) =£(x(t)), y(t) =hx()), x(0)=x9cMCR"

withf: M —-R"and h: M — R.
The Taylor coeffients x1,...,x4 € R" and yo,...,y4 € R can be
computed with the forward mode of automatic differentiation:
flow: x(t) = pi(x0) =X+ X1t +xot? + - + xqt + Ot
output: y(t) =h(pi(x0)) =yo + yit + yat® + - - - + yat? + O(t4+1)
Iterated Lie derivatives of the scalar field i along the vector field f:
+k

y(t) = hpi(x0)) = > LEh(xo H = LEh(xo) = Ky
k=0
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Computation of Lie Derivatives
Iterated Lie derivatives of a scalar field

C interface of LIEDRIVERS library:
int Lie_scalarc (Tape_F ,Tape_H,n,x0,d, res)

short Tape_F; // tape tag of vector field f
short Tape_H; // tape tag of scalar field h
short n; // dimension n

double x0[n]; // vector xg

short d; // highest degree d

double res[d+1]; // Liederivatives
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Computation of Lie Derivatives
Iterated Lie derivatives of a scalar field

C interface of LIEDRIVERS library:
int Lie_scalarc (Tape_F ,Tape_H,n,x0,d, res)

short Tape_F; // tape tag of vector field f
short Tape_H; // tape tag of scalar field h
short n; // dimension n

double x0[n]; // vector xg

short d; // highest degree d

double res[d+1]; // Liederivatives

Also supported:
@ Simulaneous computation for multiple scalar fields
@ Gradients of Lie derivatives of scalar fields
@ Lie derivatives of vector fields and covector fields
@ C++ interface
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Applications in Nonlinear Control
Nonlinear control systems

We consider computational problems occurring in controller and
observer design for nonlinear control systems

x(t) = f(x(t)) +gx(t)u
y(t) = h(x(®))

with
state  x(t) € M CR™ (open subset)
input  u(t) € R
output y(t) e R
and
fg: M — R (vector fields)
h:M — R (scalar field)
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Applications in Nonlinear Control

Applications of Lie derivatives in nonlinear control

e Exact input-output linearization (Byrnes; Isidori):

h(x), Leh(x), ..., LEh(x), LgLy ‘h(x), r ... relative degree
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Applications in Nonlinear Control

Applications of Lie derivatives in nonlinear control

e Exact input-output linearization (Byrnes; Isidori):

h(x), Leh(x), ..., LEh(x), LgLy ‘h(x), r ... relative degree

e Exact input-state linearization (Byrnes; Isidori):

g(x), adeg(x), ..., ad?_lg(x)
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Applications in Nonlinear Control

Applications of Lie derivatives in nonlinear control

e Exact input-output linearization (Byrnes; Isidori):

h(x), Leh(x), ..., LEh(x), LgLy ‘h(x), r ... relative degree

e Exact input-state linearization (Byrnes; Isidori):

g(x), adeg(x), ..., ad?_lg(x)

e High-gain observer (Gauthier, Hammouri, Othman):

w(x) == H(x), Liw(x), ..., Lf  w(x)
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Applications in Nonlinear Control

Applications of Lie derivatives in nonlinear control

e Exact input-output linearization (Byrnes; Isidori):

h(x), Leh(x), ..., LEh(x), LgLy ‘h(x), r ... relative degree

e Exact input-state linearization (Byrnes; Isidori):

g(x), adeg(x), ..., ad?_lg(x)

e High-gain observer (Gauthier, Hammouri, Othman):

w(x) == H(x), Liw(x), ..., Lf  w(x)

@ Extended Luenberger observer (Bestle, Zeitz):
v(x), ad_¢v(x), ..., ad"pv(x) with (Lfw(x),v(X)) = 0kn_1
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Summary and Outlook

Summary

o Computation of typical types of Lie derivatives based on
algorithmic differentiation

@ Suitable for complex equation based models (branches, loops,
encapsulation, ...)

o C interface for micro controller implementations
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Summary and Outlook

Summary

o Computation of typical types of Lie derivatives based on
algorithmic differentiation

@ Suitable for complex equation based models (branches, loops,
encapsulation, ...)

o C interface for micro controller implementations

Outlook
@ Native integration in ADOL-C

@ Specialized functions for nonlinear control
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