A Model Driven Approach for Requirements Engineering of Industrial Automation Systems

<u>Hongchao Ji</u> (Bosch Rexroth AG, Germany) Oliver Lenord (Bosch Rexroth AG, Germany) Dieter Schramm (University Duisburg Essen, Germany)

PO check valves

> 05.09.2011 Zürich

osition nominal

to pump-accu-unit

4th International Workshop on Equation-Based Object-Oriented Modeling Language and Tools

16/08/2011 | DC/ETI23 | Hongchao Ji | © Bosch Rexroth AG 2011. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

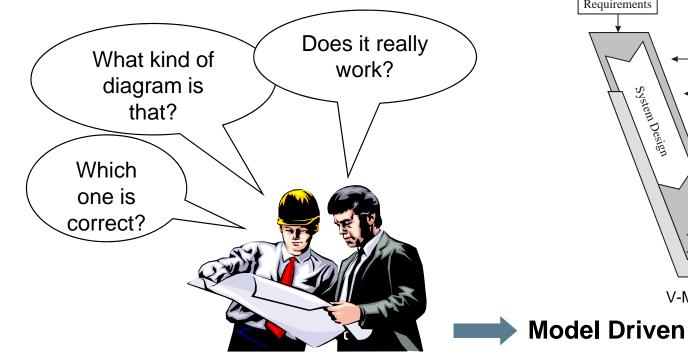
Rexroth Bosch Group

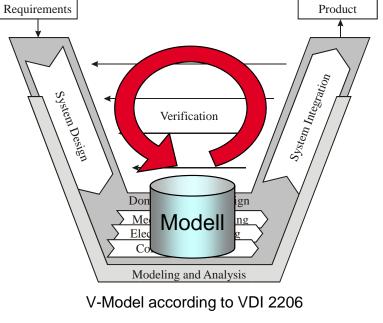
Content

2

Introduction

- Model Driven Requirements Engineering
- Case Study: Hydrostatic Press System
- Conclusion and Outlook




Motivation

3

What are the problems?

- Textual specifications
- No universal modeling language
- Manuel verification process
- ➔ Inconsistencies between documents
- ➔ Misunderstanding among different disciplines
- → Hard to detect the design error at the early stage

Model Driven Requirements Engineering

Introduction

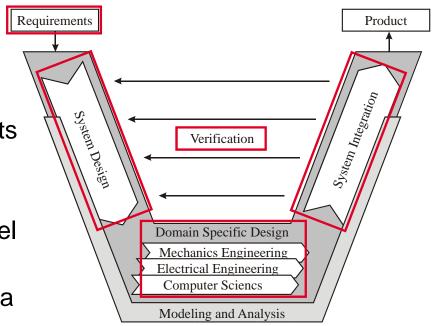
- Model Driven Requirements Engineering (MDRE)
 - Development method providing the means for using models to direct the course of understanding, design, construction and deployment. [OMG: MDA Guide]
- The deficiencies of SysML as the modeling language in MDRE
 - Requirement constructs are not sufficiently defined
 - It is not capable to describe dynamic models

Goals of this work

- Analyze the applicability of MDRE in the field of industrial automation
- Extend the SysML requirement constructs
- Integration with Modelica by using ModelicaML

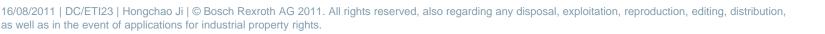
Content

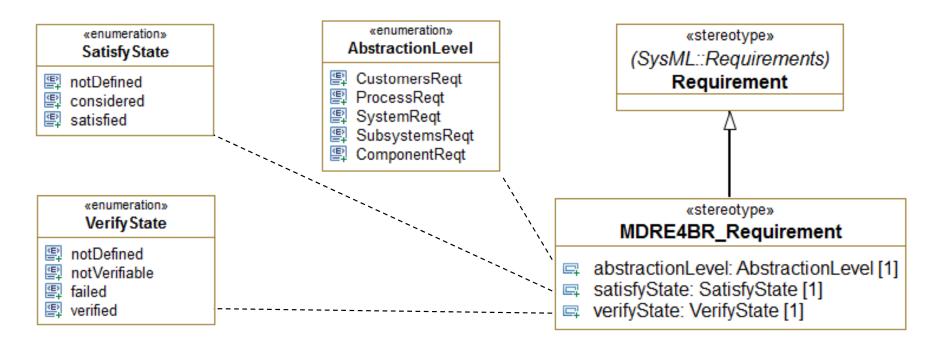
5


- Introduction
 - Model Driven Requirements Engineering
 - Case Study: Hydrostatic Press System
 - Conclusion and Outlook

6

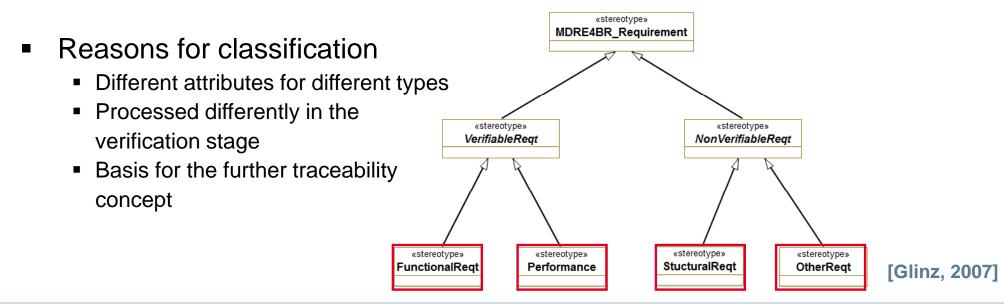
Application of MDRE in Industrial Automation


- Modeling languages and tools used in each design phase
 - Requirements: SysML requirement constructs extended by the MDRE4BR profile
 - System design: SysML diagrams used to model the descriptive system design
 - Domain-specific design: domain-specific drawing tools reflecting the SysML concepts is desired
 - System integration: Modelica models created or generated from the design model by using ModelicaML
 - Verification: run the simulation of Modelica model to verify the system design against system requirements


MDRE4BR Profile

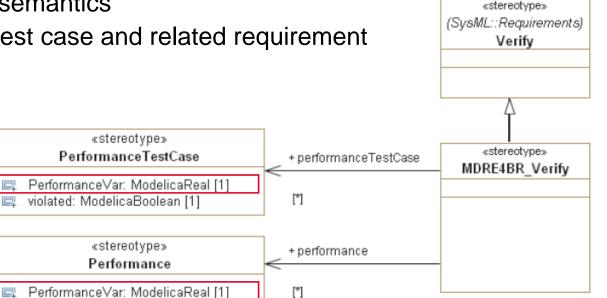
- The shortcomings of SysML requirements constructs
 - No classification of requirements
 - Limited traceability concept
 - No executable test cases
- Objective of the MDRE4BR profile
 - UML profile to extend the SysML requirements constructs
 - Enhanced definitions of requirements
 - Extend the traceability links
 - Verification process compliant with the development of industrial automation systems
 - Integration with Modelica

Definition of Requirements


- Abstraction Level helps to cluster the requirements in a break down structure
- Satisfy State check the coverage of the requirement
- Verify State identifies the verification results

Classification of Requirements

- Classification
 - A *functional requirement* is a requirement that should produce an expected reaction to a given stimuli.
 - A performance is a requirement to check whether a system variable such as timing, speed, volume or throughput is in a desired range.
 - A *structural requirement* is a requirement which describes the structural demand of the stakeholder.
 - A other requirement is all the other types of not-analytically-verifiable requirements


Rex

Bosch Group

Traceability of Requirements

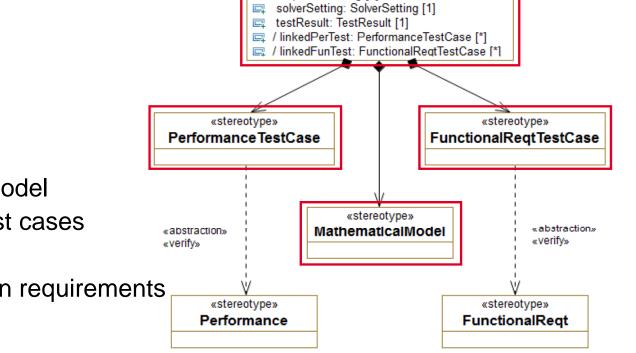
- Traceability in SysML
 - Requirement to requirement: (copy, containment, deriveReqt)
 - Requirement to design element: (satisfy, trace, refine)
 - Requirement to test case: (verify)
- Concept to extend the **satisfy** and **verify** relationships

- More precisely defined semantics
- Binding of variables of test case and related requirement with verify relation

Rex

Bosch Group

Open issue


Trace back the verification results to requirement automatically

Verification of Requirements

- New stereotypes
 - Performance Test Case
 - Functional Requirement Test Case
 - Test Scenario
 - Mathematical Model
- Verification process
 - Define a test scenario
 - Select a mathematical model
 - Select the associated test cases
 - Run the simulation
 - Update the Verify State in requirements
- Open issue

11

 Define a traceability link between test cases and mathematical model to automate the variables binding

startTime: String [1] stopTime: String [1]

«stereotype»

TestScenario

Rex

Bosch Group

Content

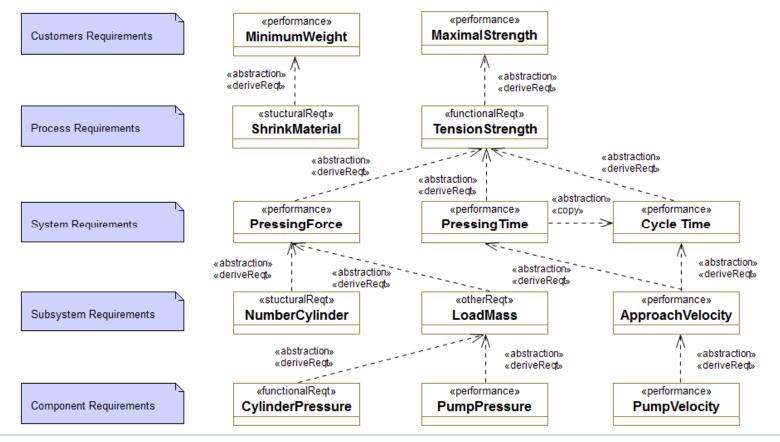
- 3
- Introduction
- Model Driven Requirements Engineering
- Case Study: Hydrostatic Press System
- Conclusion and Outlook

Case Study: Hydrostatic Press System

The tasks

13

- Analysis of customer requirements
- Modeling of customer requirements
- Modeling of system design
 - System structures
 - System behaviors
 - Domain-specific design
- Modeling of the analytical models
- Verification of systems design against requirements



14

Step 1: Capture and Refine Requirements

- Capture the customer requirements as stereotyped requirements according to the classification
- Refine the higher level requirements to lower level requirements

Rexroth

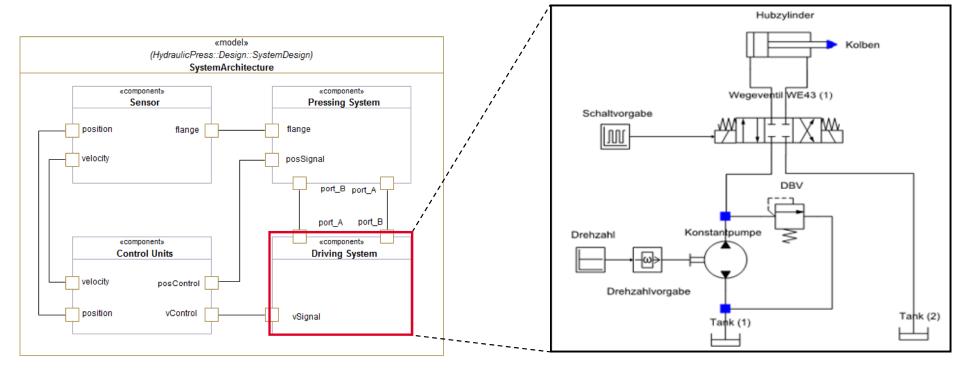
Bosch Group

Step 1: Capture and Refine Requirements

- Capture the customer requirements as stereotyped requirements according to the classification
- Refine the higher level requirements to lower level requirements

Remarks:

 The requirements can be structured systematically using different abstraction levels and classifications



16

Step 2: Create System Design Models

- System design: create the structural and behavioral model with SysML diagrams
- Domain-specific design: create the detailed design model in a domain-specific drawing tool

Step 2: Create System Design Models

- System design: model the structural and behavioral model with SysML diagrams
- Domain-specific design: model the detailed design model in a domain-specific drawing tool

Remarks

17

- The system design process is well supported by SysML
- SysML is not suited for the domain-specific design
- Tool support for the domain-specific design with the extension that it can also reflect SysML constructs (stored as SysML model) is desired

«performance»

ApproachVelocity

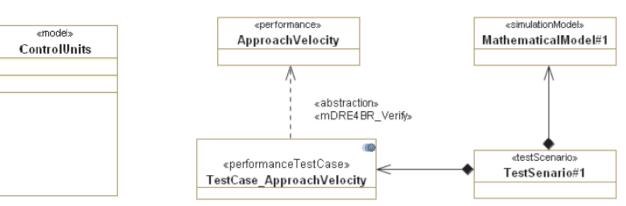
text = The approach

velocity of the load shall

«Performance» id = P4

be 0.5 m/s

Step 3: Establish Traceability Links


- Satisfy
 - Select the design object supposed to satisfy the requirement
 - Check and update the Satisfy State

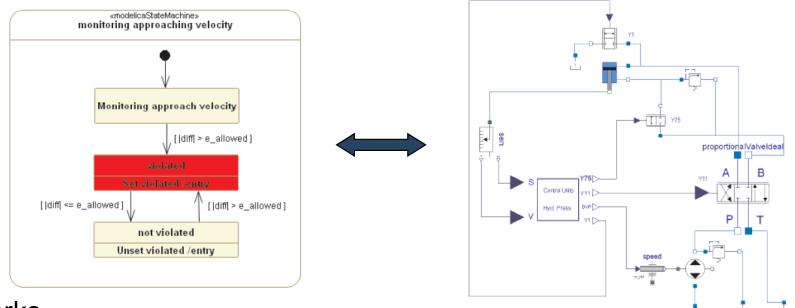
«abstraction» «mDRE4BR Satisi(»

 Check the coverage of requirements

Verify

- Define test case for each analytically-verifiable requirement
- Create the verify relation
- Binding the variables

Remarks

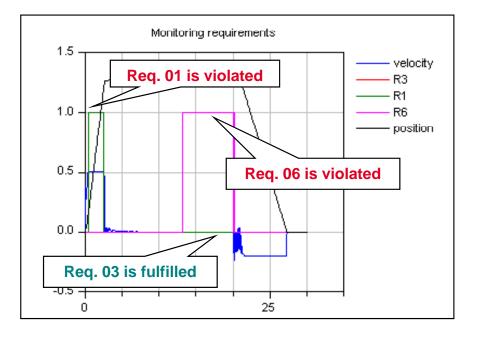

18

Improved impact analysis by using the extended traceability links

Step 4: Create Analytical Models

- Modeling test case including violation monitor (vVDR, [Schamai, 2010])
- Creating related mathematical models
- Link the mathematical model and test cases in the test scenario

Rex


Remarks

The vVDR method is applicable to our MDRE process

Step 5: Update Results of Verification

- Run the simulation
- Update the Verify State in each requirement

ID	Description	?
R1	The approaching velocity of the load shall be 0.5 m/s.	
R2	The maximum force of cylinder can not exceed 200 kN	ightarrow
R3	The pressing velocity must not exceed 10 mm/s	\bigcirc
R4	The cycle time shall not exceed 27.5 s	ightarrow
R5	The returning velocity shall be 0.2m/s	ightarrow
R6	The pressing position shall be 1300 mm, the allowable error is 1mm.	

Remarks

20

Automatic update the Verify State is desired

Content

- Introduction
- Model Driven Requirements Engineering
- Case Study: Hydrostatic Press System
- Conclusion and Outlook

Conclusion and Outlook

Conclusions

- Engineering of industrial automation systems benefits from the MDRE
 - Formal requirements modeling
 - Standard modeling languages covering the whole development process
 - Automatic verification process
- The enhanced SysML requirement constructs of the MDRE4BR profile have been demonstrated by the case study

Outlook

- Finishing the implementation of the Modelica code generator considering traceability links
- Integrated tool support for the whole process

23

