Synchronous Events in the OpenModelica Compiler with a Petri Net Library Application Simulation hybrid systems in Modelica

Willi Braun, Bernhard Bachmann and Sabrina Pross

Department of Applied Mathematics University of Applied Sciences Bielefeld 33609 Bielefeld, Germany

2010-10-03

Hybrid models Hybrid modeling

Hybrid

- Mixed systems with continuous and discrete components
- Simulation needs handling with events and discontinuities

Applications

- Switched electric circuits
- Controlled systems
- Petri Nets

Elements of a Petri Net

- Fundamental items are places and transitions
- Directed arcs connect items

Elements of a Petri Net

- Fundamental items are places and transitions
- Directed arcs connect items

Elements of a Petri Net

- Fundamental items are places and transitions
- Directed arcs connect items

Modifications

- The fireing speed can be discribed by differential equations for continuous behaviour
- Transistions may have a stochastic delay
- Edges may have weightings, threshold and inhibition

Elements of a Petri Net

- Fundamental items are places and transitions
- Directed arcs connect items

Modifications

- The fireing speed can be discribed by differential equations for continuous behaviour
- Transistions may have a stochastic delay
- Edges may have weightings, threshold and inhibition

 $\Rightarrow \mathsf{Hybrid} \ \mathsf{models}$

Hybrid models Petri Nets in OpenModelica

Library in OpenModelica

- Continuous, discrete and stochastic places and transitions can be combined
- Combined Petri Nets are versatile applicable
 For example: production or biological processes

Problems in OpenModelica

• "when equations" were not treated synchronously

Figure: Elements of the PetriNet-Library

Figure: Example network

Hybrid models Modelling events with Modelica

- Conditional expressions like u > 0 trigger events.
- If events occurs the value is stored twice.
- In this example y is the right limit and pre(y) is the left limit.

Hybrid models Hybrid Modelica DAE-System

Flatten Modelica model:

$$\begin{split} 0 &= F(\underline{\dot{x}}(t), \underline{x}(t), \underline{y}(t), \underline{u}(t), \underline{q}(t_e), \underline{q_{pre}}(t_e), \underline{c}(t_e), \underline{p}, t) \\ &\downarrow \text{ matching and sorting algorithm transform to} \\ \underline{z} &= \begin{pmatrix} \underline{\dot{x}}(t) \\ \underline{y}(t) \\ \underline{q}(t_e) \end{pmatrix} = \begin{pmatrix} \underline{f}(\underline{x}(t), \underline{u}(t), \underline{q_{pre}}(t_e), \underline{c}(t_e), \underline{p}, t) \\ \underline{g}(\underline{x}(t), \underline{u}(t), \underline{q_{pre}}(t_e), \underline{c}(t_e), \underline{p}, t) \\ \underline{h}(\underline{x}(t), \underline{u}(t), \underline{q_{pre}}(t_e), \underline{c}(t_e), \underline{p}, t) \end{pmatrix} \end{split}$$

Hybrid models Synchronous Data-flow principle

Sorting of when equations

```
//known Variable: u
when y2 > 2 then
y3 = f1(y4);
end when;
y4 = f2(y5);
when y1 > 0 then
y5 = f3(u);
y2 = f4(y4);
end when;
y1 = f5(u);
```

Incidence-Matrix

$\begin{array}{l} y3 = f1(y4) \\ y4 = f2(y5) \\ y5 = f3(u) \\ y2 = f4(y4) \end{array}$	$ \begin{array}{c} y1\\ 0\\ 0\\ 1\\ 1 \end{array} $	$y2 \\ 1 \\ 0 \\ 0 \\ 1$	$egin{array}{c} y3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} y4 \\ 1 \\ 1 \\ 0 \\ 1 \end{array}$	$\begin{array}{c} y5\\0\\1\\1\\0\end{array}$
y2 = f4(y4)	1	1	0	1	0
y1 = f5(u)	$\backslash 1$	0	0	0	0/

Hybrid models Synchronous Data-flow principle

Sorting of when equations

```
//known Variable: u

y1 = f5(u);

when y1 > 0 then

y5 = f2(u);

end when;

y4 = f3(y5);

when y1 > 0 then

y2 = f4(y4);

end when;

when y2 > 2 then

y3 = f1(y4);

end when;
```

Incidence-Matrix

	y1	y5	y4	y2	y3
y1 = f5(u)	/1	0	0	0	0)
y5 = f3(u)	1	1	0	0	0
y4 = f3(y5)	0	1	1	0	0
y2 = f4(y4)	1	0	1	1	0
y3 = f1(y4)	$\sqrt{0}$	0	1	1	1/
	`				í

Hybrid models Synchronous Data-flow principle

Sorting of when

//known Variabl y1 = f5(u);when y1 > 0 t y5 = f2(u);end when; y4 = f3(y5);when y1 > 0 t y2 = f4(y4)end when; when y2 > 2 t y3 = f1(y4)end when;

equations	Incidence-Matrix						
equations							
e: u		a.1	a.5	a. 1	<i></i> 9		
hen	$y_1 = f_5(u)$	$\frac{y_1}{1}$	$\frac{y_{0}}{0}$		$\frac{y_2}{0}$	$\begin{pmatrix} y_3 \\ 0 \end{pmatrix}$	
	$y_5 = f_3(u)$	1	1	0	0	0	
hen	y4 = f3(y5)	0	1	1	0	0	
;	y2 = f4(y4)	1	0	1	1	0	
hen	y3 = f1(y4)	$\sqrt{0}$	0	1	1	1/	
;							

Sorting equations

Sorting is based on all equations due to the correct order of evaluation at all time points.

Hybrid models Hybrid Modelica DAE-System

Flatten Modelica model:

$$\begin{split} 0 &= F(\underline{\dot{x}}(t), \underline{x}(t), \underline{y}(t), \underline{u}(t), \underline{q}(t_e), \underline{q_{pre}}(t_e), \underline{c}(t_e), \underline{p}, t) \\ &\downarrow \text{ matching and sorting algorithm transform to} \\ \underline{z} &= \begin{pmatrix} \underline{\dot{x}}(t) \\ \underline{y}(t) \\ \underline{q}(t_e) \end{pmatrix} = \begin{pmatrix} \underline{f}(\underline{x}(t), \underline{u}(t), \underline{q_{pre}}(t_e), \underline{c}(t_e), \underline{p}, t) \\ \underline{g}(\underline{x}(t), \underline{u}(t), \underline{q_{pre}}(t_e), \underline{c}(t_e), \underline{p}, t) \\ \underline{h}(\underline{x}(t), \underline{u}(t), \underline{q_{pre}}(t_e), \underline{c}(t_e), \underline{p}, t) \end{pmatrix} \end{split}$$

Hybrid models Hybrid Modelica DAE-System

Flatten Modelica model:

 $0 = F(\underline{\dot{x}}(t), \underline{x}(t), \underline{y}(t), \underline{u}(t), \underline{q}(t_e), \underline{q}_{pre}(t_e), \underline{c}(t_e), \underline{p}, t)$ $\downarrow \text{ matching and sorting algorithm transform to}$

$$\underline{z} = \begin{pmatrix} \underline{\dot{x}}(t) \\ \underline{y}(t) \\ \underline{q}(t_e) \end{pmatrix} = \begin{pmatrix} \underline{f}(\underline{x}(t), \underline{u}(t), \underline{q}_{pre}(t_e), \underline{c}(t_e), \underline{p}, t) \\ \underline{g}(\underline{x}(t), \underline{u}(t), \underline{q}_{pre}(t_e), \underline{c}(t_e), \underline{p}, t) \\ \underline{h}(\underline{x}(t), \underline{u}(t), \underline{q}_{pre}(t_e), \underline{c}(t_e), \underline{p}, t) \end{pmatrix}$$

We get four blocks:

continuous \underline{f} and $\underline{g} \rightarrow$ derivative states and algebraic variables discrete $\underline{h} \rightarrow$ discrete algebraic variables all $\underline{z} \rightarrow$ all three block together An additional block to manage the conditions for events:

 $\underline{c}(t) \rightarrow \text{Zero Crossing functions}$

Intial Step

- Initial-value problem is solved by a simplex-method
- Initial Zero-crossing functions and check for initial events

Integration step

- Integration method: $x_{i+1} = \Phi(x_i)$
- Calculate for the next step t_{i+1} the new state vector $\underline{x}(t_{i+1})$
- Evaluate continuous blocks \underline{f} and \underline{g}

$$\underline{\dot{x}}(t_{i+1}) = \underline{f}(\underline{x}(t_{i+1}), \underline{q}(t_i), \underline{q_{pre}}(t_i), \underline{c}(t_{i+1}), t)$$
$$\underline{y}(t_{i+1}) = \underline{g}(\underline{x}(t_{i+1}), \underline{q}(t_i), \underline{q_{pre}}(t_i), \underline{c}(t_{i+1}), t)$$

Implementation in OpenModelica Check for event conditions

Check for zero-crossing

- Conditions are converted into zero-crossing functions
- x < 2 changes from false to true when x 2 crosses zero
- If any zero-crossing becomes true an event is fired

Root-finding method

- Find root in interval $[t_i; t_{i+1}]$ as event time t_e
- Bisection is a simple and robust method, but it is also relative slowly
- All methods approximate the root by setting limits on each side of t_e
- Additional we have $t_e \epsilon$ and $t_e + \epsilon$

Handle event

- Determine states at $t_e \epsilon$ with interpolation
- Otermine continuous blocks by using functions <u>f</u> and <u>g</u>
- Save all variables as values for pre() and emit them to result file

$$\frac{\dot{x}(t_e - \epsilon)}{\underline{p}(t_e - \epsilon)} = \underline{f}(\underline{x}(t_e - \epsilon), \underline{q}(t_i), \underline{q_{pre}}(t_i), \underline{c}(t_e - \epsilon), t)$$

$$\underline{y}(t_e - \epsilon) = \underline{g}(\underline{x}(t_e - \epsilon), \underline{q}(t_i), \underline{q_{pre}}(t_i), \underline{c}(t_e - \epsilon), t)$$

Handle event

- Determine states at $t_e + \epsilon$ with interpolation
- 2 Evaluate all blocks by using function \underline{z}
- One of the changes of discrete variables
- Event Iteration

$$\underline{z} = \frac{\underline{\dot{x}}(t_e + \epsilon)}{\underline{q}(t_e + \epsilon)} = \frac{\underline{f}(\underline{x}(t_e + \epsilon), \underline{q}_{pre}(t_e), \underline{c}(t_e), t)}{\underline{g}(\underline{x}(t_e + \epsilon), \underline{q}_{pre}(t_e), \underline{c}(t_e), t)}$$
$$\underline{\underline{z}} = \frac{\underline{\dot{x}}(t_e + \epsilon)}{\underline{q}(t_e + \epsilon)} = \frac{\underline{f}(\underline{x}(t_e + \epsilon), \underline{q}_{pre}(t_e), \underline{c}(t_e), t)}{\underline{h}(\underline{x}(t_e + \epsilon), \underline{q}_{pre}(t_e), \underline{c}(t_e), t)}$$

Examples and results

Summary

Examples Example for correct sorting of when-equations

```
model when_sorting
  Real x;
  Real y;
  Boolean w(start=true);
  Boolean v(start=true);
  Boolean z(start=true);
equation
 when sample(0,1) then
    x = pre(x) + 1;
    y = pre(y) + 1;
  end when:
 when y > 2 and pre(z) then
   w = false:
  end when:
 when x > 2 then
    z = false;
  end when:
  when y > 2 and z then
    v = false;
  end when;
end when_sorting;
```

Examples Example for correct sorting of when-equations

```
model when_sorting
  Real x;
  Real y;
  Boolean w(start=true);
  Boolean v(start=true);
  Boolean z(start=true);
equation
 when sample(0,1) then
    x = pre(x) + 1;
    y = pre(y) + 1;
  end when:
 when y > 2 and pre(z) then
   w = false:
  end when:
  when x > 2 then
    z = false:
  end when:
  when y > 2 and z then
    v = false;
  end when;
end when_sorting;
```

Incidence-Matrix

	y	x	w	z	v
y = pre(y) + 1	/1	0	0	0	0)
x = pre(x) + 1	0	1	0	0	0
w = false	1	0	1	0	0
z = false	0	1	0	1	0
v = false	$\backslash 1$	0	1	1	1/

Examples Example for correct sorting of when-equations

```
model when_sorting
  Real x;
  Real y;
  Boolean w(start=true);
  Boolean v(start=true);
  Boolean z(start=true);
equation
 when sample(0,1) then
    x = pre(x) + 1;
    y = pre(y) + 1;
  end when:
 when y > 2 and pre(z) then
   w = false:
  end when:
  when x > 2 then
    z = false;
  end when:
  when y > 2 and z then
    v = false;
  end when:
end when_sorting;
```


Examples and results

Summary

Examples Petri Net example for a production process

Examples and results

Summary

Examples Petri Net example for a production process

Examples Petri Net example for a production process

Summary

- With this algorithmic approach we can simulate many synchronously appearing events.
- The Petri Net Library for OpenModelica has been optimized, so that now events can be specified with the aid of "when-equation".
- The performance of the current implementation can be further improved:
 - by handling time events separately with a suitable step-size control.
 - by achieving more advanced root finding methods.