Import of distributed parameter models into lumped parameter model libraries for the example of linearly deformable solid bodies

3rd International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools Oslo, Norway, October 3, 2010

Tobias Zaiczek Olaf Enge-Rosenblatt

Fraunhofer Institute for Integrated Circuits Design Automation Division Dresden, Germany

Import of distributed parameter models into lumped parameter model libraries for the example of linearly deformable solid bodies

- 1. Introduction
- 2. General Considerations
- 3. Import of Flexible Bodies
- 4. Simulation Examples
- 5. Summary and Outlook

Import of distributed parameter models into lumped parameter model libraries for the example of linearly deformable solid bodies

1. Introduction

- 2. General Considerations
- 3. Import of Flexible Bodies
- 4. Simulation Examples
- 5. Summary and Outlook

Introduction Simulation of Heterogeneous Systems

Introduction Models

Model: Distributed parameter model

$$\mathcal{D}_t oldsymbol{u} + \mathcal{R}oldsymbol{u} = oldsymbol{w}$$

with

- appropriate linear differential operators \mathcal{D}_t and \mathcal{R} of maximal second order wrt. time
- and suitable initial and boundary conditions

Idea:

Import of distributed parameter systems into lumped parameter libraries

Issues:

- Simulation can only be done on a finite dimensional model
- We need interaction with other models
- Models tend to be very complex and large in scale

I ⇒ discretization
 ⇒ connector definition
 ⇒ model order reduction

Tobias Zaiczek © Fraunhofer IIS

Introduction Introductory Example

Introduction **Introductory Example**

Other Applications:

- **Electrical Transmission Line**
- **Structural Mechanics**

Tobias Zaiczek © Fraunhofer IIS

Import of distributed parameter models into lumped parameter model libraries for the example of linearly deformable solid bodies

- Introduction 1
- General Considerations 2
 - Discretization
 - **Connector Definitions**
 - Model Order Reduction
- Import of Flexible Bodies 3.
- 4. Simulation Examples
- 5. Summary and Outlook

General Considerations Discretization

Model:

$$\mathcal{D}_t oldsymbol{u} + \mathcal{R}oldsymbol{u} = oldsymbol{w}$$

with

- appropriate linear differential operators \mathcal{D}_t and \mathcal{R} of maximal second order with wrt. time
- and suitable initial and boundary conditions

Discretization:

- Simulation can only be done on a finite dimensional model => discretization
- **Different Methods:**
 - FEM (Finite Element method)
 - FDM (Finite Difference method)
 - FVM (Finite Volume method)
 - BEM (Boundary Element method)

General Considerations Discretization

Discretized model:

$$oldsymbol{A}_2rac{d^2oldsymbol{\xi}}{dt^2}+oldsymbol{A}_1rac{doldsymbol{\xi}}{dt}+oldsymbol{A}_0oldsymbol{\xi}=oldsymbol{\eta}$$

with appropriate initial conditions

Variables:

- Variables \boldsymbol{u} collected in $\boldsymbol{\xi}^{\mathrm{T}}(t) \equiv \begin{pmatrix} \boldsymbol{u}^{\mathrm{T}}(\boldsymbol{R}_{1},t) & \boldsymbol{u}^{\mathrm{T}}(\boldsymbol{R}_{2},t) & \dots & \boldsymbol{u}^{\mathrm{T}}(\boldsymbol{R}_{N},t) \end{pmatrix}$
- Element Shape integrals of variables \boldsymbol{w} collected in $\boldsymbol{\eta}(t)$
- Mechanics: Mass matrix A_2 , damping matrix A_1 , and stiffness matrix A_0
- Heat flow: Heat capacitance matrix $oldsymbol{A}_1$, heat conductance matrix $-oldsymbol{A}_0$

Tobias Zaiczek © Fraunhofer IIS

Idea:

Definition of an appropriate interface to the lumped parameter simulation library

Connectors:

- Element that enables the defined interconnection between subsystems
- Enables interaction, modularity and exchangeability

Connectors of the lumped parameter model:

- (finite) set *C* of lumped connector variables
- In which some elements can be combined to vectors $\boldsymbol{\xi}^m$ and $\boldsymbol{\eta}^m$ (across and through variables)

Connectors of the lumped parameter model:

- (finite) set C of lumped connector variables
- In which some elements can be combined to vectors $\boldsymbol{\xi}^m$ and $\boldsymbol{\eta}^m$ (across and through variables)

Connectors of the lumped parameter model:

- (finite) set C of lumped connector variables
- In which some elements can be combined to vectors $\boldsymbol{\xi}^m$ and $\boldsymbol{\eta}^m$ (across and through variables)

Connectors of the discretized model:

- Set C (vectors $\boldsymbol{\xi}^m$ and $\boldsymbol{\eta}^m$)
- vectors $\boldsymbol{\xi}^s$ and $\boldsymbol{\eta}^s$ being the vectors of all (dependent) variables of those nodes that lie within
- property:
 - Vectors $\boldsymbol{\xi}^m$ and $\boldsymbol{\eta}^m$ uniquely describe behavior of variables $\boldsymbol{\xi}^s$ and $\boldsymbol{\eta}^s$
 - "Valid" configurations of \$\xi\$s" and \$\eta\$s" and \$\eta\$s" uniquely determine the variables \$\xi\$s" and \$\eta\$m"

$$egin{aligned} \mathbf{Mechanics}\ oldsymbol{\xi}^m &= egin{pmatrix} oldsymbol{u}^{ ext{T}} & oldsymbol{artheta}^{ ext{T}} \end{bmatrix}^{ ext{T}}\ oldsymbol{\eta}^m &= egin{pmatrix} oldsymbol{f}^{ ext{T}} & oldsymbol{artheta}^{ ext{T}} \end{bmatrix}^{ ext{T}} \end{aligned}$$

General Considerations

Connector Definitions for the Discretized Model

How to define?

- Behavior of $\boldsymbol{\xi}^s$ and $\boldsymbol{\eta}^s$ must be expressed in terms of $\boldsymbol{\xi}^m$ and $\boldsymbol{\eta}^m$ by two injective functions
- Can be interpreted as constraint equations
- Assuming linear constraint equations:

$$oldsymbol{\xi}^s = \hat{oldsymbol{\Phi}}oldsymbol{\xi}^m \qquad \qquad oldsymbol{\eta}^s = \hat{oldsymbol{\Psi}}oldsymbol{\eta}^m$$

Expressing new by old variables:

$$oldsymbol{\xi} = egin{pmatrix} oldsymbol{\xi}^r \ oldsymbol{\xi}^s \end{pmatrix} = egin{pmatrix} oldsymbol{0} & oldsymbol{I} \ oldsymbol{\hat{\xi}}^r \end{pmatrix} egin{pmatrix} oldsymbol{\xi}^m \ oldsymbol{\xi}^r \end{pmatrix} \equiv oldsymbol{ar{\Phi}}oldsymbol{ar{\xi}} \ oldsymbol{\xi}^r \end{pmatrix}$$

Result:

$$egin{aligned} ar{m{A}}_2 \ddot{m{ar{\xi}}} + ar{m{A}}_1 \dot{m{ar{\xi}}} + ar{m{A}}_0 ar{m{\xi}} &= ar{m{\eta}}_e + ar{m{B}} m{\eta}^m \ m{\xi}^m &= ar{m{C}} ar{m{\xi}} \end{aligned}$$

General Considerations Model Order Reduction

Why do we often need model order reduction?

- Discretized model tend to get large in scale
- Equation-based simulation tools are not able to handle large-scale dynamical systems

Objective?

Approximation of the model behavior by a model of lower dimension with the same structure as the original model

How do we apply that?

- Considering as constraint equation on allowed solutions
- Using Lagrange Multiplier Theorem

$$egin{aligned} oldsymbol{A}_{q,2}\ddot{oldsymbol{q}}+oldsymbol{A}_{q,1}\dot{oldsymbol{q}}+oldsymbol{A}_{q,0}oldsymbol{q}&=oldsymbol{\eta}_{e,q}+oldsymbol{B}_{q}oldsymbol{\eta}^m\ oldsymbol{\xi}^m&=oldsymbol{C}_{q}oldsymbol{q} \end{aligned}$$

Import of distributed parameter models into lumped parameter model libraries for the example of linearly deformable solid bodies

- 1. Introduction
- 2. General Considerations
- 3. Import of Flexible Bodies
 - Connector Definitions
 - Discretization
 - Model Order Reduction
 - Nonlinear Equations
- 4. Simulation Examples
- 5. Summary and Outlook

Task:

Including dynamic behavior of deformable bodies into classical multi-body libraries

Task:

Including dynamic behavior of deformable bodies into classical multi-body libraries

Challenges:

- Discretization
- **Connector Definition**
- Model order reduction
- Taking into account the nonlinear character of large motions of the body

Import of Flexible Bodies Idea

Sketch:

Idea:

- Considering the motion as a superposition of
 - Motion of reference frame \mathcal{B}
 - Small deformations of body
- Describing of deformation through linear Finite Element Model
- Considering every connector as a rigid body
- Fixing reference frame to one connector

Import of Flexible Bodies Discretization

Discretized model:

$$Mrac{d^2m{\xi}}{dt^2} + Drac{dm{\xi}}{dt} + Km{\xi} = m{\eta}$$

with appropriate initial conditions

Variables:

- Displacements \boldsymbol{u} collected in $\boldsymbol{\xi}^{\mathrm{T}} \equiv \begin{pmatrix} \boldsymbol{u}^{\mathrm{T}}(\boldsymbol{R}_{1}) & \boldsymbol{u}^{\mathrm{T}}(\boldsymbol{R}_{2}) & \dots & \boldsymbol{u}^{\mathrm{T}}(\boldsymbol{R}_{N}) \end{pmatrix}$
- Forces \boldsymbol{f} collected in $\boldsymbol{\eta}^{\mathrm{T}} \equiv \begin{pmatrix} \boldsymbol{f}^{\mathrm{T}}(\boldsymbol{R}_{1}) & \boldsymbol{f}^{\mathrm{T}}(\boldsymbol{R}_{2}) & \dots & \boldsymbol{f}^{\mathrm{T}}(\boldsymbol{R}_{N}) \end{pmatrix}$
- Mass matrix M, damping matrix D, and stiffness matrix K

Connector Definitions for the Mechanical Model

Connectors:

- "slave nodes": all nodes that should be used to create a connector
- Variables in $\boldsymbol{\xi}^m$ can be seen as the transl. and rot. deflection of a virtual "master node"
- Variables in η^m can be interpreted as the forces and torques acting on the virtual "master node"
- slave nodes rigidly attached to master node
- coordinates of master node uniquely determine coordinates of all slave nodes

Constraint equations:

- Assuming small deformations
- Use of geometric linearization

Equations of Motion:

 $ar{M}\ddot{ar{ar{\xi}}}+ar{D}\dot{ar{ar{\xi}}}+ar{K}ar{ar{ar{\xi}}}=ar{oldsymbol{\eta}}_e+ar{B}oldsymbol{\eta}^m$

Import of Flexible Bodies Inclusion of non-linear terms

Idea: Moving reference frame

$$\bar{M}\begin{pmatrix} \overset{\text{oo}}{\bar{\xi}} + \boldsymbol{a}_0 \end{pmatrix} + \bar{D} \overset{\text{o}}{\bar{\xi}} + \bar{K} \bar{\xi} = \bar{\Phi}^{\mathrm{T}} \boldsymbol{\eta}_e + \boldsymbol{\eta}_c + \bar{B} \boldsymbol{\eta}^m$$

$$\boldsymbol{\xi}^m = \bar{B}^{\mathrm{T}} \bar{\boldsymbol{\xi}}$$

Nonlinear terms:

Acceleration of body frame:

$$\underbrace{(\boldsymbol{a}_{0})_{i}}_{i} = \begin{cases} \begin{pmatrix} \ddot{\boldsymbol{r}}_{0} + (\dot{\tilde{\boldsymbol{\omega}}} + \tilde{\boldsymbol{\omega}}^{2})(\tilde{\boldsymbol{R}}_{c,i} + \boldsymbol{\xi}_{i}) + 2\tilde{\boldsymbol{\omega}}\dot{\boldsymbol{\xi}}_{i} \\ \dot{\boldsymbol{\omega}} + \tilde{\boldsymbol{\omega}}\dot{\boldsymbol{\xi}}_{i} \end{pmatrix} & i \in \Omega_{m} \\ \ddot{\boldsymbol{r}}_{0} + (\dot{\tilde{\boldsymbol{\omega}}} + \tilde{\boldsymbol{\omega}}^{2})(\tilde{\boldsymbol{R}}_{i} + \boldsymbol{\xi}_{i}) + 2\tilde{\boldsymbol{\omega}}\dot{\boldsymbol{\xi}}_{i} & i \in \Omega_{r} \end{cases}$$

Coriolis forces on connectors:

$$\overbrace{(\boldsymbol{\eta}_c)_i} = \begin{cases} \begin{pmatrix} \tilde{\boldsymbol{\omega}} & \mathbf{0} \\ \mathbf{0} & \tilde{\boldsymbol{\omega}} \end{pmatrix} \bar{\boldsymbol{M}}_{i,i} \begin{pmatrix} \mathbf{0} \\ \boldsymbol{\omega} \end{pmatrix} & \text{for } i \in \Omega_m \\ \mathbf{0} & \text{for } i \in \Omega_r. \end{cases}$$

EOOLT, Oslo, Norway, October 3, 2010 Folie: 26 / 31

Model Order Reduction and Fixing Reference Frame

Model Order Reduction:

- Approximation by a model of lower dimension: $ar{m{\xi}} pprox m{V} m{q}$
- Reduction matrix V must include rigid body modes Note:
- model of lower dimension but with the same structure as before Result:

- Reference frame has to be fixed to one connector
- Position of other connectors can be expressed in terms of the deformation coordinates and the reference frame position and orientation

Import of Flexible Bodies Inclusion of non-linear terms

Equations of motion: Moving reference frame

$$\begin{pmatrix} \boldsymbol{m}\boldsymbol{I} & \boldsymbol{m}\tilde{\boldsymbol{r}}_{s}^{\mathrm{T}} \\ \boldsymbol{m}\tilde{\boldsymbol{r}}_{s} & \boldsymbol{\Theta}_{0} \\ \boldsymbol{M}_{b1} & \boldsymbol{M}_{b2} \end{pmatrix} \begin{pmatrix} \boldsymbol{\ddot{r}}_{0} \\ \boldsymbol{\dot{\omega}} \\ \boldsymbol{M}_{\bar{q}} \end{pmatrix} + \boldsymbol{\check{D}}\boldsymbol{\dot{\bar{q}}} + \boldsymbol{\check{K}}\boldsymbol{\bar{q}} + \boldsymbol{g}(\boldsymbol{\omega},\boldsymbol{\bar{q}},\boldsymbol{\dot{\bar{q}}}) = \boldsymbol{V}^{\mathrm{T}}\boldsymbol{\bar{\Phi}}^{\mathrm{T}}\boldsymbol{\eta}_{e} + \boldsymbol{\check{B}}\boldsymbol{\eta}^{m} \\ \boldsymbol{\check{\bar{q}}} \end{pmatrix}$$

Coupling matrices: $oldsymbol{M}_{b1},oldsymbol{M}_{b2}$

 $oldsymbol{g}(oldsymbol{\omega},oldsymbol{ar{q}},\dot{oldsymbol{ar{q}}})$ Nonlinear terms:

Import of distributed parameter models into lumped parameter model libraries for the example of linearly deformable solid bodies

- 1. Introduction
- 2. General Considerations
- 3. Import of Flexible Bodies
- 4. Simulation Examples
 - Static Deformation of a Long Beam
 - Eigenfrequency Analysis of an L-shaped Beam
 - T-square under Uniform Rotation
- 5. Summary and Outlook

Simulation Examples Static Deformation of a long Beam

Experiment Setup:

$$f_z = 1 \cdot 10^{-4} \text{ N}$$
$$t_x = 1 \cdot 10^{-4} \text{ Nm}$$
$$t_y = 1 \cdot 10^{-4} \text{ Nm}$$
$$E = 2 \cdot 10^{11} \text{ Pa}$$

Simulation Examples Static Deformation of a long Beam

Relative Error:

	Theory	ANSYS
u_z	0,06 %	4.08 · 10 ⁻³ %
$arphi_x$	0,80 %	1.75 · 10 ⁻³ %
$arphi_y$	0,08 %	1.36 · 10 ⁻³ %

Interpretation:

Relative errors between the simulation results from Dymola and

- the ANSYS results as well as
- the theoretic results

are sufficiently small

Tobias Zaiczek © Fraunhofer IIS

Simulation Examples Eigenfrequency Analysis of an L-shaped Beam

Experiment Setup:

no damping $E = 2.1 \cdot 10^{11} \,\mathrm{Pa}$ $h = 5 \,\mathrm{mm}$ $G = 82 \cdot 10^9 \, \text{Pa}$ $b = 12 \,\mathrm{mm}$ $\rho = 7900 \, \text{kg/m^3}$ $l = 1 \,\mathrm{m}$

Results:

	f ₁	<i>f</i> ₂	f ₃	f ₄	<i>f</i> ₅
Theory	3.331 Hz	9.070 Hz	44.772 Hz	66.687 Hz	143.179 Hz
ANSYS	3.337 Hz	9.121 Hz	44.802 Hz	66.030 Hz	143.173 Hz
Dymola	3.337 Hz	9.121 Hz	44.802 Hz	66.030 Hz	143.173 Hz

Simulation Examples

Eigenfrequency Analysis of an L-shaped Beam

Simulation Examples Eigenfrequency Analysis of an L-shaped Beam

Experiment	Setup:
------------	--------

no damping

 $h = 5 \,\mathrm{mm} \qquad \qquad E = 2.1 \cdot 10^{11} \,\mathrm{Pa}$

 $h = 12 \,\mathrm{mm}$ $G = 82 \cdot 10^9 \,\mathrm{Pa}$

Relative errors between the simulation results from Dymola and

- the ANSYS results as well as
- Re the theoretic results

are	sufficiently small	I
are	Sumclency sman	I

Theory	3.331 Hz	9.070 Hz	44.772 Hz	66.687 Hz	143.179 Hz
ANSYS	3.337 Hz	9.121 Hz	44.802 Hz	66.030 Hz	143.173 Hz
Dymola	3.337 Hz	9.121 Hz	44.802 Hz	66.030 Hz	143.173 Hz

Simulation Examples T-Square under Uniform Rotation

Experiment Setup:

Rayleigh damping $E = 2 \cdot 10^{11} \text{ Pa}$ b = 4 cm $\mu = 0.3$ h = 2 cm $l_1 = 15 \text{ cm}$ $l_2 = 15 \text{ cm}$

Results in SimulationX:

	Connector 1	Connector 2
u_x	9.696 [.] 10 ⁻⁶ mm	5.004 ·10 ⁻⁴ mm
u_y	-4.042 ·10 ⁻⁴ mm	-1.358 ·10 ⁻⁴ mm
u_z	-2.382 ·10 ⁻³ mm	-3.699 ·10 ⁻³ mm

Simulation Examples T-Square under Uniform Rotation

Simulation Examples Static Deformation of a long Beam

Relative error:

	Connector 1	Connector 2
u_x	0.02 %	0.02 %
u_y	0.02 %	0.02 %
u_z	0.03 %	0.02 %

Interpretation:

Relative errors between the simulation results from SimulationX and ANSYS are sufficiently small

Import of distributed parameter models into lumped parameter model libraries for the example of linearly deformable solid bodies

- 1. Introduction
- 2. General Considerations
- 3. Import of Flexible Bodies
- 4. Simulation Examples
- 5. Summary and Outlook

Summary and Outlook Summary

Presentation showed

- an approach of including discretized distributed parameter models into libraries of lumped parameter models
- an approach for a connector definition
- the application to flexible bodies
- simulation results to verify the models

Summary and Outlook Outlook

Further investigations are necessary on

- different connector definitions
- a more general description of the models (port-hamiltonian framework)
- the evaluation of the chosen approach for the import of flexible bodies compared to other approaches
- heterogeneous systems with different physical domains

Import of distributed parameter models into lumped parameter model libraries for the example of linearly deformable solid bodies

Introduction

- 2. General Considerations
- 3. Import of Flexible Bodies
- 4. Simulation Examples
- Thank you!

Contact: Tobias Zaiczek Olaf Enge-Rosenblatt

Fraunhofer Institute for Integrated Circuits Design Automation Division Dresden, Germany

