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Import of distributed parameter models into lumped parameter
model libraries for the example of linearly deformable solid
bodies
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Models

Model:  Distributed parameter model
Dtu + Ru = w
with

B appropriate linear differential operators Diand R
of maximal second order wrt. time

B and suitable initial and boundary conditions

Idea:
B Import of distributed parameter systems into lumped parameter libraries

Issues:

B Simulation can only be done on a finite dimensional model = discretization
B We need interaction with other models = connector definition
B Models tend to be very complex and large in scale = model order reduction
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Introduction
Introductory Example
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Import of distributed parameter models into lumped parameter

model libraries for the example of linearly deformable solid
bodies

2. General Considerations
Discretization
Connector Definitions

Model Order Reduction
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Discretization

Model:
Diu + Ru = w
with

B appropriate linear differential operators Diand R
of maximal second order with wrt. time

B and suitable initial and boundary conditions

Discretization:
B Simulation can only be done on a finite dimensional model => discretization
m Different Methods:

FEM (Finite Element method)

FDM (Finite Difference method)

FVM (Finite Volume method)

BEM (Boundary Element method)
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Discretization

Discretized model:

3 d§
a2 +A1E + Ao§ =1

with appropriate initial conditions

A;

Variables: =

B Variables u collected in &'(¢) = (u"(R1,t) w'(Rz,t) ... u'(Ry,t))
B Element Shape integrals of variablesw collected in 7(t)

B Mechanics: Mass matrix Ay, damping matrix A;, and stiffness matrix Ag
B Heat flow: Heat capacitance matrix A1, heat conductance matrix —Ag
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Connector Definitions

ldea:

B Definition of an appropriate interface to the lumped parameter
simulation library

Connectors:
B Element that enables the defined interconnection between subsystems

B Enables interaction, modularity and exchangeability

] E
-
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Connector Definitions

Connectors of the lumped parameter model: 4 Heat flow I
B (finite) set C of lumped connector variables m_ g
® In which some elements can be combined to & = _
vectors £ and ™ (across and through variables) n" =Q
\ /
=
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Connector Definitions

Connectors of the lumped parameter model: 4 Mechanics I

B (finite) set C of lumped connector variables

mo__ gy \ 71
® In which some elements can be combined to & = (u v )
vectors £ and " (across and through variables) n" = (fT tT)T

\ /
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Connector Definitions

Connectors of the lumped parameter model: 4 : I
Mechanics

B (finite) set C of lumped connector variables

mo__ g\ T\
B In which some elements can be combined to £ = (u v )
vectors £ and ™ (across and through variables) n

Connectors of the discretized model:
B Set C (vectors £ andn"")

B vectors £° and 17° being the vectors of all
(dependent) variables of those nodes that lie
within

B property: BN\

Vectors & and 1" uniquely describe behavior
of variables £° and n°

“Valid” configurations of £ and 7° uniquely | N
determine the variables £ and n™ =

\
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Connector Definitions for the Discretized Model

How to define?

B Behavior of £° and 17° must be expressed in terms
of €™ and """ by two injective functions

B Can be interpreted as constraint equations

B Assuming linear constraint equations:
£ = pem n®=Pon" L

B Expressing new by old variables:
-G ()
— 2] =1 z - | = PE
Result: (£ ¢ 0 ¢

A2§ + Alé + Ao =7, + Bn™
§" =C¢
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Model Order Reduction

Why do we often need model order reduction?

W Discretized model tend to get large in scale

M Equation-based simulation tools are not able to handle large-scale

dynamical systems
Objective?

B Approximation of the model behavior
by a model of lower dimension with

the same structure as the original model

How do we apply that?

B Considering as constraint equation on
allowed solutions

B Using Lagrange Multiplier Theorem

4 _g;qu N

[
N Y

Q

Aq2q+ Ag1q+ Ago0q =", 4+ Bgm"™"
£" =Cyq
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Import of distributed parameter models into lumped parameter

model libraries for the example of linearly deformable solid
bodies

3. Import of Flexible Bodies
Connector Definitions
Discretization
Model Order Reduction

Nonlinear Equations
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Task

Task:

® Including dynamic behavior of deformable bodies into classical multi-body
libraries
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Task

>
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Task

Task:

® Including dynamic behavior of deformable bodies into classical multi-body
libraries

Challenges:

M Discretization

B Connector Definition
B Model order reduction

B Taking into account the nonlinear character of large motions of the body
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Idea

Sketch:

o Ry u(R,t)

A

Idea:
B Considering the motion as a superposition of
Motion of reference frame B
Small deformations of body
B Describing of deformation through linear Finite Element Model
B Considering every connector as a rigid body

B Fixing reference frame to one connector
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Discretization

Discretized model:

d*¢ dg
MES L DY ke —
2 TP tRE=n

with appropriate initial conditions

Variables:
® Displacements u collected in &' = (u"(R1) u'(R2) ... u"(Rn))
® Forces f collectedin ' = (f'(R1) f'(R2) ... f'(Rn))

B Mass matrix M, damping matrix D, and stiffness matrix K
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Connector Definitions for the Mechanical Model

Connectors:

B “slave nodes”: all nodes that should be

used to create a connector

. . m
W Variables in & can be seen as the transl. and
rot. deflection of a virtual “master node”

B Variablesin 77" can be interpreted as the forces
and torques acting on the virtual “master node

B slave nodes rigidly attached to master node

B coordinates of master node uniquely
determine coordinates of all slave nodes

Constraint equations:
® Assuming small deformations
M Use of geometric linearization

Equations of Motion:

n

MEé¢ + DE + K€ =n, + Bn™

2 PFlangs
Z Flange

LJ 3 =
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Inclusion of non-linear terms

ldea: Moving reference frame

¢" = B'E N
Nonlinear terms: u(R,t)
B Acceleration of body frame:
(*o + (@ + &) (Rei + &) + 25::5%.) e
(ao); = w+ W&, m

o+ (0 +@%)(Ri + &) +208 i€,
B Coriolis forces on connectors:

“ ? MH 0 for 2 € Q,,
(m.), 0 @ w

0 for 7 € Q.
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Model Order Reduction and Fixing Reference Frame

Model Order Reduction:
B Approximation by a model of lower dimension: € ~ Vg
Note: Reduction matrix V' must include rigid body modes

Result: model of lower dimension but with the same structure as before

Fixing Reference Frame: B £

R

/ W
z u(R t)
B Reference frame has to be fixed to one connector

M Position of other connectors can be expressed in terms of the deformation
coordinates and the reference frame position and orientation
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Inclusion of non-linear terms

Equations of motion: Moving reference frame

B Coupling matrices: My, Mo

® Nonlinear terms: g(w,q,q)
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Import of distributed parameter models into lumped parameter

model libraries for the example of linearly deformable solid
bodies

4. Simulation Examples
Static Deformation of a Long Beam

Eigenfrequency Analysis of an L-shaped Beam

T-square under Uniform Rotation
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Static Deformation of a long Beam

Experiment Setup:

f.=1-107*N
f. tz =1-10"" Nm
ty ty =1-10"*Nm

;o E=2-10"Pa

Dymola Model:

A
0=A
gl

m i
= =

|
y world Flange 2 forceAndTor.| .
M

-9 =3

k=0
d
1
dy
k=1e-4
d

|
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Static Deformation of a long Beam

Relative Error:

Theory ANSYS
U 0,06 % 4.08 103 %
Do 0,80 % 1.75-103 %
Py 0,08 % 1.36 103 %
Interpretation:
/Relative errors between the simulation results from Dymola and N
M the ANSYS results as well as
B the theoretic results
\are sufficiently small -
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Eigenfrequency Analysis of an L-shaped Beam

Experiment Setup:

® no damping

=

h = 5mm E=21-10"Pa

b=12mm G =82-10"Pa

[=1m p = 7900 k8/m3 <>

Results:
f f, f3 f, fs

Theory 3.331 Hz 9.070 Hz 44772 Hz | 66.687 Hz | 143.179 Hz
ANSYS 3.337 Hz 9.121Hz | 44.802 Hz | 66.030 Hz | 143.173 Hz
Dymola 3.337 Hz 9.121 Hz 44.802 Hz | 66.030 Hz | 143.173 Hz
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Eigenfrequency Analysis of an L-shaped Beam

Eigen modes:

DISPLACEMENT AN AN:
o ocT 23 2009 OCT 23 2009
20:33:26 20:33:48
EQ=66.03
D =.593102
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Eigenfrequency Analysis of an L-shaped Beam

Experiment Setup:

® no damping

h = 5mm E=21-10"Pa
h— 12 mm (7 —R2.107 Pa
Relative errors between the simulation results from Dymola and A
M the ANSYS results as well as
R{ ™ the theoretic results
are sufficiently small
Theory 3.331 Hz 9.070 Hz 44772 Hz | 66.687 Hz | 143.179 Hz
ANSYS 3.337 Hz 9.121 Hz 44.802 Hz | 66.030 Hz | 143.173 Hz
Dymola 3.337 Hz 9.121 Hz 44.802 Hz | 66.030 Hz | 143.173 Hz
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T-Square under Uniform Rotation

Experiment Setup:

M Rayleigh damping

E=2.10"Pa MY

b=4cm v =20.3

h =2cm p = 7850 ke/m?3

[{ = 15¢cm [o = 1bcm

Results in SimulationX:
Connector 1 Connector 2

Uy 9.696 -10°® mm 5.004 104 mm
Uy -4.042 104 mm -1.358 104 mm
Uz -2.382 103 mm -3.699 103 mm
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T-Square under Uniform Rotation

ANSYS resu

S.

NGDAL SOLUTION

STEP=1

(avG)

DX =.40SE-05
.195E-08

AN

SEP 15 2009

135E-05

-.100E-06

~_714E-08

_8678-07

274806

]

62806

-5568-06

16:36:37

508-05

NGDAL SOLUTION

STEP=1

S25E-05

-.as5E-06

= 384E-08

-.3148-06

2431-06

-.172E-08

= Tozi-os

- 31zE-07

33

AN

SEP 15 2009
16:36:54

1108-08

NODAL SOLUTICH

STEP=1
sUB =1

TINE=1

uz (ave)
RST5=0

DHX =.405E-05

B 400E-05

sM¥ =.1128-07

AN

SEP 15 2009
16:37:08

R

-.z66E-05

5 =
-.177E-05 -.8801-06 L128-07

133805 . 434E-08
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Static Deformation of a long Beam

Relative error:

Connector 1

Connector 2

Us 0.02 % 0.02 %
U, 0.02 % 0.02 %
U 0.03 % 0.02 %

Interpretation:

Relative errors between the simulation results from SimulationX and
ANSYS are sufficiently small
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Import of distributed parameter models into lumped parameter
model libraries for the example of linearly deformable solid
bodies

5. Summary and Outlook
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Summary

Presentation showed

B an approach of including discretized distributed parameter models into
libraries of lumped parameter models

B an approach for a connector definition
B the application to flexible bodies

W simulation results to verify the models
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Outlook

Further investigations are necessary on
B different connector definitions
B a more general description of the models (port-hamiltonian framework)

B the evaluation of the chosen approach for the import of flexible bodies
compared to other approaches

B heterogeneous systems with different physical domains
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Import of distributed parameter models into lumped parameter

model libraries for the example of linearly deformable solid
bodies

s N

Thank you!

Contact: Tobias Zaiczek
Olaf Enge-Rosenblatt

Fraunhofer Institute for Integrated Circuits
Design Automation Division
Dresden, Germany
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