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Dynamic optimization

Dynamic optimization problem
We consider dynamic optimization problems of the form (can be generalized further):

minimize:
x(·), z(·), u(·), p

∫ T

t=0
L(x, u, z, p, t) dt + E(x(T ))

subject to:
f (ẋ(t), x(t), z(t), u(t), p, t) = 0 t ∈ [0,T ]

h(x(t), z(t), u(t), p, t) ≤ 0 t ∈ [0,T ]
r(x(0), x(T ), p) = 0

x : R+ → RNx differential states, z : R+ → RNz algebraic states,

u : R+ → RNu control, p ∈ RNp free parameters

Solution

Dynamic programming / Hamilton-Jacobi-Bellman equation – for very small problems

Pontryagin’s Maximum Principle – for problems without inequality constraints

Direct methods: Parametrize controls and possibly state to form a Nonlinear Program (NLP)

Collocation: Parametrize state to form a large, but sparse NLP
Single-shooting: Eliminate the state with an DAE integrator to form a small, but nonlinear NLP
Multiple-shooting: Parametrize state at some times and use single shooting in between

Good reference: L. Biegler Nonlinear Programming, SIAM 2010
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Dynamic optimization

Direct Multiple Shooting
(Bock, 1984)

Subdivide time horizon: 0 = t0 ≤ . . . ≤ TN

Parametrize control: u(t) = ui , t ∈ [ti , ti+1]

Parametrize state: sx,i = x(ti )

Nonlinear Program (NLP):

minimize:
sx,i , ui , p

N−1∑
i=0

Li (sx,i , ui , p) + E(sx,N )

subject to:

sx,i+1 = Fi (sx,i , ui , p), ∀i
0 ≥ hi (sx,i , ui , p), ∀i
0 = r(sx,0, sx,N , p)

Fi : Call to an DAE integrator

Solve with e.g. structure-exploiting SQP method

Software: ACADO Toolkit, MUSCOD-II

Notes

The problem formulation can be generalized (e.g.
free end time, multiple model stages, hybrid)

Large scale NLP solvers require derivative
information, at least first order
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Automatic differentiation

Automatic differentiation
Automatic differentiationa, AD, is able to cheaply and accurately providing derivative evaluation of a function
f = f (x) by applying the chain rule to the algorithm. Two “modes”:

Forward mode: ∂f
∂x

r

Reverse (adjoint) mode: rT ∂f
∂x

a
See e.g. Griewank & Walther: Evaluating Derivatives, 2008

Implementations

Operator overloading (OO)

Idea: Use operator overloading in e.g. C++, to record calculations
Easy to implement, expecially in forward mode, needs only a C++- compiler
Disadvantage: Effective implementation is based on template meta programming
Tools: ADOL-C, CppAD, ...

Source code transformation (SCT)

Implements AD inside a compiler (think GCC)
Advantage: Efficient code
Disadvantage: Hard to implement, less mature than OO
Tool: OpenAD

Can be applied to “black-box” C or Fortran functions!
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Motivation

Observations

To apply an existing AD tool, we first need to generate C-code

The AD tool will parses the code to obtain the graph we already had!

More sensible approach: Apply AD to the graph directly

Benifits:

No compiler in the loop
No information losses (e.g. for systems with switches)
Convex reformulation (cf. CVX)
Structure exploatation

Structure exploatation: The Lifted Newton method

Albersmeyer & Diehl, SIAM 2010

”Lifts” non-linear root-finding problems to a higher dimension

Speeds up convergence, increases region of attraction

Requires that the functions are given as an algorithm

Example: A single-shooting algorithm can be lifted to a multiple-shooting algorithm with condensing
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CasADi

What is CasADi?

A minimalistic Computer Algebra System (CAS) written in self-contained C++

Implements AD by a hybrid OO/SCT approach

Enables step-by-step symbolic reformulation of a dynamic optimization problem into an equivalent NLP

Tailored for high speed, especially during numerical evaluation

Contains interfaces to Sundials (IDAS,CVodes ), IPOPT, ACADO Toolkit, JModelica

Open-source project: first public release autumn 2010 (www.casadi.org)

Permissive licence, LGPL
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Structure of CasADi

Two graph representations used in conjunction

Scalar expression, SX Matrix expression, MX
”maximum speed” ”maximum generality”

number of arguments two arbitrary
nodes scalar-valued vector-valued

operations built-in all (e.g. calls to FX)
branching/jumps no yes

parallelization no yes
syntax double double, ublas::matrix

Dynamically created functions
Function expression, FX

[y1, . . . , yn] = f (x1, . . . , xm), yi ∈ Rri , xj ∈ Rqj

Polymorphic class, derived classes:

Function given by a graph of SX nodes
Function given by a graph of MX nodes
External function (e.g. from DLL)
Integrator and ”Simulator”

Observation

SX ∼ DAG in AD-tools

MX ∼ DAG in Modelica
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Structure of CasADi

The Integrator class

An integrator is considered to be a function: x(tf) = F (t0, tf, x(t0), p)

Currently one explicit integrator (CVodes) and one implicit integrator (IDAS)

AD forward/reverse corresponds to forward/adjoint sensitivities

The Simulator class

Evaluates an output function, h(t, x, p) in a set of time points, [t1, . . . , tn ], using an arbitrary integrator

Also considered a function: [y1, . . . , yn, x(tf)] = G([t0, tf, x(t0), p, [t1, . . . , tn ]) with
yi := h(ti , x(ti ), p)

Relation to dynamic optimization
The integrator and simulator classes used e.g. in shooting-methods
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Results

Determinant calculation

AD speed benchmark (ADOL-C, CppAD)

f (X ) = |X |, X ∈ RN×N by minor expansion

Complexity exponential in N

Adjoint derivatives

Intel Core Duo 2.4 GHz, 4 GB RAM, 3072 KB
L2 cache, 128 KB L1 cache

Results

Outperforms ADOL-C, keeps up with CppAD up
to 8-by-8 (≈ 100.000 operations)

∼ 20 ns per operation (= speed of cache)

Optimized c-code (generated), not much faster
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Results

Minimal fuel rocket flight

minimize:
u, s, v,m

−m(T )

subject to:

ṡ = v

v̇ = (u − α v2)/m

ṁ = −β u2

s(0) = 0, s(T ) = 10
v(0) = 0, v(T ) = 0
m(0) = 1,T = 10
−10 ≤ u ≤ 10

(1)

Solution

1000 controls intervals, 1000 steps per interval

Build graph for integrating over a single interval

This graph defines the function ”integrator”

Build up a graph with calls

This graph defines objective and constraint funcs.

Pass to NLP solver (IPOPT)

Convergence after 11 iteration, 10.4 s.

Euler forward integrator
SX s_0("s_0"), v_0("v_0"), m_0("m_0");

std::vector<SX> x0 = {s_0,v_0,m_0};

SX u("u");

SX s = s_0, v = v_0, m = m_0;

double dt = 10.0/1000;

for(int j=0; j<1000; ++j){

s += dt*v;

v += dt / m * (u - alpha * v*v);

m += -dt * beta*u*u;

}

std::vector<SX> x = {s,v,m};

FX integrator = SXFunction({x0,u},x);

Single shooting
std::vector<double> X0 = {0,0,1}; // X at t=0

MX X = X0; // state vector

MX U("U",1000); // control vector

for(int k=0; k<1000; ++k){

X = integrator.evaluate({X,U[k]});

}

MX s_T = X[0], v_T = X[1], m_T = X[2];

...
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Solution

1000 controls intervals, 1000 steps per interval

Build graph for integrating over a single interval

This graph defines the function ”integrator”

Build up a graph with calls

This graph defines objective and constraint funcs.

Pass to NLP solver (IPOPT)

Convergence after 11 iteration, 10.4 s.

Euler forward integrator
SX s_0("s_0"), v_0("v_0"), m_0("m_0");

std::vector<SX> x0 = {s_0,v_0,m_0};

SX u("u");

SX s = s_0, v = v_0, m = m_0;

double dt = 10.0/1000;
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Single shooting
std::vector<double> X0 = {0,0,1}; // X at t=0

MX X = X0; // state vector

MX U("U",1000); // control vector

for(int k=0; k<1000; ++k){

X = integrator.evaluate({X,U[k]});

}

MX s_T = X[0], v_T = X[1], m_T = X[2];

...
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Results

Van-der-pol oscillator

From JModelica example collection

Export OCP as Modelica/Optimica XML

Parse the XML code in CasADi, reconstruct OCP

Solve with ACADO Toolkit

Open-source dynamic optimization
software from OPTEC
Houska & Ferreau 2008-present
www.acadotoolkit.org

Spatial discretization with
multiple-shooting
Non-linear program (NLP) solved with
Sequential Quadratic Programming
(SQP)
Limited memory Hessian approximation
Initialized with u = 0 for all t

Convergence after 26 iterations

minimize:
x1(·), x2(·), u(·)

∫ 20

0
ep3 (x2

1 + x2
2 + u2) dt

subject to:

ẋ1 = (1− x2
2 ) x1 − x2 + u

ẋ2 = p1 x1
x1(0) = 0, x2(0) = 1
u ≤ 0.75

(2)
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Conclusions

Conclusions

OCPs can be step-by-step symbolically reformulated into a NLP

Benefits: Structure exploiting, no compiler in-the-loop, no retapes for hybrid systems

By using a combination of two sorts of graphs, we can satisfy demands on speed, memory and generality

Shooting methods can be implemented by introducing ODE/DAE integrators into the directed graphs

CasADi: Open-source software project
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Outlook

Next steps

First public release of CasADi (autumn 2010)

Fully integrate with JModelica, support all features

Applications: solar power, combined cycle, hydropower valley

Large-scale (distributed, parallel) SQP (with C. Savorgnan, A. Kozma)

Further research

Dynamic optimization of large-scale hybrid systems (reformulate as MINLP)

PDE constrained optimization
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Outlook

Thank you for listening.
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