

3rd International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools Oslo, 3 October 2010

Towards a Computer Algebra System with Automatic Differentiation for use with object-oriented modelling languages

> Joel Andersson and Moritz Diehl Boris Houska

Department of Electrical Engineering (ESAT-SCD) & Optimization in Engineering Center (OPTEC) Katholieke Universiteit Leuven

OPTEC - Optimization in Engineering

OPTEC – Optimization in Engineering

- Interdiciplinary: Mech.Eng. + Elec.Eng. + Civ.Eng. + Comp.Sc.
- Katholieke Universiteit Leuven, Belgium
- 2005-2010, phase II 2010-2017

OPTEC - Optimization in Engineering

OPTEC – Optimization in Engineering

- $\bullet \ \ \, Interdiciplinary: \ \ Mech.Eng. \ + \ \ Elec.Eng. \ + \ Civ.Eng. \ + \ Comp.Sc.$
- Katholieke Universiteit Leuven, Belgium
- 2005-2010, phase II 2010-2017

Myself

- M.Sc. Engineering Physics/Mathematics from Chalmers, Gothenburg
- PhD student since Oct 2008 for Prof. Moritz Diehl
- Topic: Modelling and Derivative Generation for Dynamic Optimization and Application to Large Scale Interconnected DAE Systems
- Application: Solar thermal power plant

Dynamic optimization problem

We consider dynamic optimization problems of the form (can be generalized further):

 $\begin{array}{lll} \underset{x(\cdot), z(\cdot), u(\cdot), p}{\text{minimize:}} & \int_{t=0}^{T} L(x, u, z, p, t) \, dt + E(x(T)) \\ & \\ f(\dot{x}(t), x(t), z(t), u(t), p, t) & = 0 & t \in [0, T] \\ & \\ \text{subject to:} & h(x(t), z(t), u(t), p, t) & \leq 0 & t \in [0, T] \\ & \\ f(x(0), x(T), p) & = 0 \end{array}$

 $x:\mathbb{R}_+\to\mathbb{R}^{N_x}$ differential states, $z:\mathbb{R}_+\to\mathbb{R}^{N_z}$ algebraic states, $u:\mathbb{R}_+\to\mathbb{R}^{N_u}$ control, $\rho\in\mathbb{R}^{N_p}$ free parameters

Dynamic optimization problem

We consider dynamic optimization problems of the form (can be generalized further):

 $\begin{array}{lll} \underset{x(\cdot), z(\cdot), u(\cdot), p}{\text{minimize:}} & \int_{t=0}^{T} L(x, u, z, p, t) \, dt + E(x(T)) \\ & \\ f(x(t), x(t), z(t), u(t), p, t) &= 0 & t \in [0, T] \\ & \\ \text{subject to:} & h(x(t), z(t), u(t), p, t) &\leq 0 & t \in [0, T] \\ & \\ r(x(0), x(T), p) &= 0 \end{array}$

OPTEC

 $x: \mathbb{R}_+ \to \mathbb{R}^{N_x}$ differential states, $z: \mathbb{R}_+ \to \mathbb{R}^{N_z}$ algebraic states, $u: \mathbb{R}_+ \to \mathbb{R}^{N_u}$ control, $p \in \mathbb{R}^{N_p}$ free parameters

Solution

Dynamic programming / Hamilton-Jacobi-Bellman equation – for very small problems

Dynamic optimization problem

We consider dynamic optimization problems of the form (can be generalized further):

 $\begin{array}{lll} \underset{x(\cdot), z(\cdot), u(\cdot), p}{\text{minimize:}} & \int_{t=0}^{T} L(x, u, z, p, t) \, dt + E(x(T)) \\ & & \\ f(\dot{x}(t), x(t), z(t), u(t), p, t) &= 0 & t \in [0, T] \\ & & \\ \text{subject to:} & & h(x(t), z(t), u(t), p, t) &\leq 0 & t \in [0, T] \\ & & & r(x(0), x(T), p) &= 0 \end{array}$

OPTEC

 $\begin{array}{l} x: \mathbb{R}_+ \to \mathbb{R}^{N_X} \text{ differential states, } z: \mathbb{R}_+ \to \mathbb{R}^{N_Z} \text{ algebraic states,} \\ u: \mathbb{R}_+ \to \mathbb{R}^{N_U} \text{ control, } p \in \mathbb{R}^{N_p} \text{ free parameters} \end{array}$

Solution

- Dynamic programming / Hamilton-Jacobi-Bellman equation for very small problems
- Pontryagin's Maximum Principle for problems without inequality constraints

Dynamic optimization problem

We consider dynamic optimization problems of the form (can be generalized further):

 $\begin{array}{lll} \underset{x(\cdot), z(\cdot), u(\cdot), p}{\text{minimize:}} & \int_{t=0}^{T} L(x, u, z, p, t) \, dt + E(x(T)) \\ & & \\ f(\dot{x}(t), x(t), z(t), u(t), p, t) &= 0 & t \in [0, T] \\ & & \\ \text{subject to:} & & h(x(t), z(t), u(t), p, t) &\leq 0 & t \in [0, T] \\ & & & r(x(0), x(T), p) &= 0 \end{array}$

 $\begin{array}{l} x: \mathbb{R}_+ \to \mathbb{R}^{N_X} \text{ differential states, } z: \mathbb{R}_+ \to \mathbb{R}^{N_Z} \text{ algebraic states,} \\ u: \mathbb{R}_+ \to \mathbb{R}^{N_U} \text{ control, } p \in \mathbb{R}^{N_p} \text{ free parameters} \end{array}$

Solution

- Dynamic programming / Hamilton-Jacobi-Bellman equation for very small problems
- Pontryagin's Maximum Principle for problems without inequality constraints
- Direct methods: Parametrize controls and possibly state to form a Nonlinear Program (NLP)

OPTEC

Dynamic optimization problem

We consider dynamic optimization problems of the form (can be generalized further):

 $\begin{array}{lll} \underset{x(\cdot), \, z(\cdot), \, u(\cdot), \, p}{\text{minimize:}} & \int_{t=0}^{T} L(x, \, u, \, z, \, p, \, t) \, dt + E(x(T)) \\ & & \\ f(\dot{x}(t), x(t), z(t), \, u(t), \, p, \, t) &= 0 & t \in [0, \, T] \\ & & \\ \text{subject to:} & h(x(t), z(t), \, u(t), \, p, \, t) &\leq 0 & t \in [0, \, T] \\ & & \\ r(x(0), x(T), \, p) &= 0 \end{array}$

 $\begin{array}{l} x: \mathbb{R}_+ \to \mathbb{R}^{N_X} \text{ differential states, } z: \mathbb{R}_+ \to \mathbb{R}^{N_Z} \text{ algebraic states,} \\ u: \mathbb{R}_+ \to \mathbb{R}^{N_U} \text{ control, } p \in \mathbb{R}^{N_p} \text{ free parameters} \end{array}$

Solution

- Dynamic programming / Hamilton-Jacobi-Bellman equation for very small problems
- Pontryagin's Maximum Principle for problems without inequality constraints
- Direct methods: Parametrize controls and possibly state to form a Nonlinear Program (NLP)
 - Collocation: Parametrize state to form a large, but sparse NLP

Dynamic optimization problem

We consider dynamic optimization problems of the form (can be generalized further):

 $x: \mathbb{R}_+ \to \mathbb{R}^{N_x}$ differential states, $z: \mathbb{R}_+ \to \mathbb{R}^{N_z}$ algebraic states, $u: \mathbb{R}_+ \to \mathbb{R}^{N_u}$ control, $p \in \mathbb{R}^{N_p}$ free parameters

Solution

- Dynamic programming / Hamilton-Jacobi-Bellman equation for very small problems
- Pontryagin's Maximum Principle for problems without inequality constraints
- Direct methods: Parametrize controls and possibly state to form a Nonlinear Program (NLP)
 - Collocation: Parametrize state to form a large, but sparse NLP
 - Single-shooting: Eliminate the state with an DAE integrator to form a small, but nonlinear NLP

OPTEC

Dynamic optimization problem

We consider dynamic optimization problems of the form (can be generalized further):

 $x: \mathbb{R}_+ \to \mathbb{R}^{N_x}$ differential states, $z: \mathbb{R}_+ \to \mathbb{R}^{N_z}$ algebraic states, $u: \mathbb{R}_+ \to \mathbb{R}^{N_u}$ control, $p \in \mathbb{R}^{N_p}$ free parameters

Solution

- Dynamic programming / Hamilton-Jacobi-Bellman equation for very small problems
- Pontryagin's Maximum Principle for problems without inequality constraints
- Direct methods: Parametrize controls and possibly state to form a Nonlinear Program (NLP)
 - Collocation: Parametrize state to form a large, but sparse NLP
 - Single-shooting: Eliminate the state with an DAE integrator to form a small, but nonlinear NLP

OPTEC

• Multiple-shooting: Parametrize state at some times and use single shooting in between

Good reference: L. Biegler Nonlinear Programming, SIAM 2010

Direct Multiple Shooting (Bock, 1984)

- Subdivide time horizon: $0 = t_0 \leq \ldots \leq T_N$
- Parametrize control: $u(t) = u_i$, $t \in [t_i, t_{i+1}]$
- Parametrize state: s_{x,i} = x(t_i)

Direct Multiple Shooting (Bock, 1984)

- Subdivide time horizon: $0 = t_0 \leq \ldots \leq T_N$
- Parametrize control: $u(t) = u_i$, $t \in [t_i, t_{i+1}]$
- Parametrize state: $s_{x,i} = x(t_i)$
- Nonlinear Program (NLP):

$$\begin{array}{ll} \text{minimize:} & \sum_{s_{x,i}, u_i, p}^{N-1} \sum_{i=0}^{N-1} L_i(s_{x,i}, u_i, p) + E(s_{x,N}) \end{array}$$

subject to:

$$\begin{array}{lll} s_{x,i+1} &= F_i(s_{x,i},u_i,p), & \forall \\ 0 &\geq h_i(s_{x,i},u_i,p), & \forall \\ 0 &= r(s_{x,0},s_{x,N},p) \end{array}$$

F_i: Call to an DAE integrator

Direct Multiple Shooting (Bock, 1984)

- Subdivide time horizon: $0 = t_0 \leq \ldots \leq T_N$
- Parametrize control: $u(t) = u_i$, $t \in [t_i, t_{i+1}]$
- Parametrize state: s_{x,i} = x(t_i)
- Nonlinear Program (NLP):

$$\begin{array}{ll} \text{minimize:} & \sum_{s_{x,i}, u_i, p}^{N-1} \sum_{i=0}^{N-1} L_i(s_{x,i}, u_i, p) + E(s_{x,N}) \end{array}$$

subject to:

- F_i: Call to an DAE integrator
- Solve with e.g. structure-exploiting SQP method
- Software: ACADO Toolkit, MUSCOD-II

Direct Multiple Shooting (Bock, 1984)

- Subdivide time horizon: $0 = t_0 \leq \ldots \leq T_N$
- Parametrize control: $u(t) = u_i$, $t \in [t_i, t_{i+1}]$
- Parametrize state: s_{x,i} = x(t_i)
- Nonlinear Program (NLP):

minimize:
$$\sum_{s_{x,i}, u_i, p}^{N-1} \sum_{i=0}^{N-1} L_i(s_{x,i}, u_i, p) + E(s_{x,N})$$

subject to:

- F_i: Call to an DAE integrator
- Solve with e.g. structure-exploiting SQP method
- Software: ACADO Toolkit, MUSCOD-II

Notes

• The problem formulation can be generalized (e.g. free end time, multiple model stages, hybrid)

OPTEC

 Large scale NLP solvers require derivative information, at least first order

Automatic differentiation

Automatic differentiation

Automatic differentiation^a, AD, is able to cheaply and accurately providing derivative evaluation of a function f = f(x) by applying the **chain rule to the algorithm**. Two "modes":

- Forward mode: $\frac{\partial f}{\partial x} r$
- Reverse (adjoint) mode: r^T <u>∂f</u>/_{∂x}

^aSee e.g. Griewank & Walther: Evaluating Derivatives, 2008

Automatic differentiation

Automatic differentiation

Automatic differentiation^a, AD, is able to cheaply and accurately providing derivative evaluation of a function f = f(x) by applying the **chain rule to the algorithm**. Two "modes":

- Forward mode: $\frac{\partial f}{\partial x} r$
- Reverse (adjoint) mode: r^T <u>∂f</u>/_{∂x}

^aSee e.g. Griewank & Walther: Evaluating Derivatives, 2008

Implementations

Operator overloading (OO)

- Idea: Use operator overloading in e.g. C++, to record calculations
- Easy to implement, expecially in forward mode, needs only a C++- compiler
- Disadvantage: Effective implementation is based on template meta programming

OPTEC

- Tools: ADOL-C, CppAD, ...
- Source code transformation (SCT)
 - Implements AD inside a compiler (think GCC)
 - Advantage: Efficient code
 - Disadvantage: Hard to implement, less mature than OO
 - Tool: OpenAD

Can be applied to "black-box" C or Fortran functions!

Towards a Computer Algebra System with Automatic Differentiation — Joel Andersson

Motivation

Observations

- To apply an existing AD tool, we first need to generate C-code
- The AD tool will parses the code to obtain the graph we already had!
- More sensible approach: Apply AD to the graph directly

Benifits:

- No compiler in the loop
- No information losses (e.g. for systems with switches)
- Convex reformulation (cf. CVX)
- Structure exploatation

Motivation

Observations

- To apply an existing AD tool, we first need to generate C-code
- The AD tool will parses the code to obtain the graph we already had!
- More sensible approach: Apply AD to the graph directly

Benifits:

- No compiler in the loop
- No information losses (e.g. for systems with switches)
- Convex reformulation (cf. CVX)
- Structure exploatation

Structure exploatation: The Lifted Newton method

- Albersmeyer & Diehl, SIAM 2010
- "Lifts" non-linear root-finding problems to a higher dimension
- Speeds up convergence, increases region of attraction
- Requires that the functions are given as an algorithm
- Example: A single-shooting algorithm can be lifted to a multiple-shooting algorithm with condensing

OPTEC

What is CasADi?

A minimalistic Computer Algebra System (CAS) written in self-contained C++

Towards a Computer Algebra System with Automatic Differentiation — Joel Andersson

What is CasADi?

- A minimalistic Computer Algebra System (CAS) written in self-contained C++
- Implements AD by a hybrid OO/SCT approach

Towards a Computer Algebra System with Automatic Differentiation — Joel Andersson

What is CasADi?

- A minimalistic Computer Algebra System (CAS) written in self-contained C++
- Implements AD by a hybrid OO/SCT approach
- Enables step-by-step symbolic reformulation of a dynamic optimization problem into an equivalent NLP

What is CasADi?

- A minimalistic Computer Algebra System (CAS) written in self-contained C++
- Implements AD by a hybrid OO/SCT approach
- Enables step-by-step symbolic reformulation of a dynamic optimization problem into an equivalent NLP

OPTEC

Tailored for high speed, especially during numerical evaluation

What is CasADi?

- A minimalistic Computer Algebra System (CAS) written in self-contained C++
- Implements AD by a hybrid OO/SCT approach
- Enables step-by-step symbolic reformulation of a dynamic optimization problem into an equivalent NLP
- Tailored for high speed, especially during numerical evaluation
- Contains interfaces to Sundials (IDAS, CVodes), IPOPT, ACADO Toolkit, JModelica

What is CasADi?

- A minimalistic Computer Algebra System (CAS) written in self-contained C++
- Implements AD by a hybrid OO/SCT approach
- Enables step-by-step symbolic reformulation of a dynamic optimization problem into an equivalent NLP

- Tailored for high speed, especially during numerical evaluation
- Contains interfaces to Sundials (IDAS,CVodes), IPOPT, ACADO Toolkit, JModelica
- Open-source project: first public release autumn 2010 (www.casadi.org)
- Permissive licence, LGPL

Structure of CasADi

Two graph representations used in conjunction

	Scalar expression, SX "maximum speed"	Matrix expression, MX "maximum generality"
number of arguments	two	arbitrary
nodes	scalar-valued	vector-valued
operations	built-in	all (e.g. calls to FX)
branching/jumps	no	yes
parallelization	no	yes
syntax	double	double, ublas::matrix

Dynamically created functions

Function expression, FX

- $[y_1,\ldots,y_n] = f(x_1,\ldots,x_m), y_i \in \mathbb{R}^{r_i}, x_j \in \mathbb{R}^{q_j}$
- Polymorphic class, derived classes:
 - Function given by a graph of SX nodes
 - Function given by a graph of MX nodes
 - External function (e.g. from DLL)
 - Integrator and "Simulator"

Observation

- SX \sim DAG in AD-tools
- $\bullet \ \mathsf{MX} \sim \mathsf{DAG} \text{ in Modelica}$

The Integrator class

- An *integrator* is considered to be a function: $x(t_f) = F(t_0, t_f, x(t_0), p)$
- Currently one explicit integrator (CVodes) and one implicit integrator (IDAS)
- AD forward/reverse corresponds to forward/adjoint sensitivities

The Integrator class

- An *integrator* is considered to be a function: $x(t_f) = F(t_0, t_f, x(t_0), p)$
- Currently one explicit integrator (CVodes) and one implicit integrator (IDAS)
- AD forward/reverse corresponds to forward/adjoint sensitivities

The Simulator class

• Evaluates an output function, h(t, x, p) in a set of time points, $[t_1, \ldots, t_n]$, using an arbitrary integrator

• Also considered a function: $[y_1, \ldots, y_n, x(t_f)] = G([t_0, t_f, x(t_0), p, [t_1, \ldots, t_n])$ with $y_i := h(t_i, x(t_i), p)$

The Integrator class

- An *integrator* is considered to be a function: $x(t_f) = F(t_0, t_f, x(t_0), p)$
- Currently one explicit integrator (CVodes) and one implicit integrator (IDAS)
- AD forward/reverse corresponds to forward/adjoint sensitivities

The Simulator class

• Evaluates an output function, h(t, x, p) in a set of time points, $[t_1, \ldots, t_n]$, using an arbitrary integrator

OPTEC

• Also considered a function: $[y_1, \ldots, y_n, x(t_f)] = G([t_0, t_f, x(t_0), p, [t_1, \ldots, t_n])$ with $y_i := h(t_i, x(t_i), p)$

Relation to dynamic optimization

The integrator and simulator classes used e.g. in shooting-methods

Determinant calculation

- AD speed benchmark (ADOL-C, CppAD)
- $f(X) = |X|, \quad X \in \mathbb{R}^{N \times N}$ by minor expansion
- Complexity exponential in N
- Adjoint derivatives
- Intel Core Duo 2.4 GHz, 4 GB RAM, 3072 KB L2 cache, 128 KB L1 cache

Determinant calculation

- AD speed benchmark (ADOL-C, CppAD)
- $f(X) = |X|, \quad X \in \mathbb{R}^{N \times N}$ by minor expansion
- Complexity exponential in N
- Adjoint derivatives
- Intel Core Duo 2.4 GHz, 4 GB RAM, 3072 KB L2 cache, 128 KB L1 cache

Results

- Outperforms ADOL-C, keeps up with CppAD up to 8-by-8 (\approx 100.000 operations)
- 20 ns per operation (= speed of cache)
- Optimized c-code (generated), not much faster

Minimal fuel rocket flight

minimize: u, s, v, m	-m(T)	
	s = v $\dot{v} = (u - \alpha v^2)/m$	
	$\dot{m} = -\beta u^2$	(1)
subject to:	s(0) = 0, s(T) = 10 v(0) = 0, v(T) = 0	
	m(0) = 0, v(T) = 0 m(0) = 1, T = 10	
	$-10 \leq u \leq 10$	

Euler forward integrator

```
SX s_0("s_0"), v_0("v_0"), m_0("m_0");
std::vectorSX> x0 = {s_0,v_0,m_0};
SX u("u");
SX s = s_0, v = v_0, m = m_0;
double dt = 10.0/1000;
for(int j=0; j<1000; ++j){
    s += dt*v;
    v += dt / m * (u - alpha * v*v);
    m += -dt * beta*u*u;
}
std::vector<SX> x = {s,v,m};
FX integrator = SXFunction({x0,u},x);
```

Single shooting

```
std::vector<double> X0 = {0,0,1}; // X at t=0
MX X = X0; // state vector
MX U("U",1000); // control vector
for(int k=0; k<1000; ++k){
    X = integrator.evaluate({X,U[k]});
}
MX s_T = X[0], v_T = X[1], m_T = X[2];
...</pre>
```

OPTEC

Minimal fuel rocket flight

minimize: u, s, v, m	-m(T)	
	$\dot{s} = v$ $\dot{v} = (u - \alpha v^2)/m$	
	$\dot{m} = -\beta u^2 $	(1)
subject to:	s(0) = 0, s(T) = 10 v(0) = 0, v(T) = 0	
	m(0) = 1, T = 10 $-10 \le u \le 10$	

Solution

1000 controls intervals, 1000 steps per interval

Euler forward integrator

```
SX s_0("s_0"), v_0("v_0"), m_0("m_0");
std::vector<SX> x0 = {s_0,v_0,m_0};
SX u("u");
SX s = s_0, v = v_0, m = m_0;
double dt = 10.0/1000;
for(int j=0; j<1000; +tj){
    s += dt*v;
    v += dt / m * (u - alpha * v*v);
    m += -dt * beta*u*u;
}
std::vector<SX> x = {s,v,m};
FX integrator = SXFunction({x0,u},x);
```

Single shooting

```
std::vector<double> X0 = {0,0,1}; // X at t=0
MX X = X0; // state vector
MX U("U",1000); // control vector
for(int k=0; k<1000; ++k){
    X = integrator.evaluate({X,U[k]});
}
MX s_T = X[0], v_T = X[1], m_T = X[2];
...</pre>
```

OPTEC

Minimal fuel rocket flight

minimize: u, s, v, m	-m(T)	
	$\dot{s} = v$ $\dot{v} = (v_1 - v_2^2)/m$	
	$\dot{w} = (u - \alpha v)/m$ $\dot{m} = -\beta u^2$	(1)
subject to:	s(0) = 0, s(T) = 10	
	v(0) = 0, v(T) = 0 m(0) = 1, T = 10	
	$-10 \le u \le 10$	

Solution

- 1000 controls intervals, 1000 steps per interval
- Build graph for integrating over a single interval
- This graph defines the function "integrator"
- Build up a graph with calls

Euler forward integrator

```
SX s_0("s_0"), v_0("v_0"), m_0("m_0");
std::vectorSX> x0 = {s_0,v_0,m_0};
SX u("u");
SX s = s_0, v = v_0, m = m_0;
double dt = 10.0/1000;
for(int j=0; j<1000; ++j){
    s += dt*v;
    v += dt / m * (u - alpha * v*v);
    m += -dt * beta*u*u;
}
std::vector<SX> x = {s,v,m};
FX integrator = SXFunction({x0,u},x);
```

Single shooting

```
std::vector<double> X0 = {0,0,1}; // X at t=0
MX X = X0; // state vector
MX U("U",1000); // control vector
for(int k=0; k<1000; ++k){
    X = integrator.evaluate({X,U[k]});
}
MX s_T = X[0], v_T = X[1], m_T = X[2];
...</pre>
```

() OPTEC

Minimal fuel rocket flight

minimize: u, s, v, m	-m(T)	
subject to:	$ \begin{split} \dot{s} &= v \\ \dot{v} &= (u - \alpha \ v^2)/m \\ \dot{m} &= -\beta \ u^2 \\ s(0) &= 0, s(T) = 10 \\ v(0) &= 0, v(T) = 0 \\ m(0) &= 1, \ T = 10 \\ -10 &\leq u \leq 10 \end{split} $	(1)

Solution

- 1000 controls intervals, 1000 steps per interval
- Build graph for integrating over a single interval
- This graph defines the function "integrator"
- Build up a graph with calls
- This graph defines objective and constraint funcs.
- Pass to NLP solver (IPOPT)

Euler forward integrator

```
SX s_0("s_0"), v_0("v_0"), m_0("m_0");
std::vectorSX> x0 = {s_0,v_0,m_0};
SX u("u");
SX s = s_0, v = v_0, m = m_0;
double dt = 10.0/1000;
for(int j=0; j<1000; ++j){
    s += dt*v;
    v += dt / m * (u - alpha * v*v);
    m += -dt * beta*u*u;
}
std::vector<SX> x = {s,v,m};
FX integrator = SXFunction({x0,u},x);
```

Single shooting

```
std::vector<double> X0 = {0,0,1}; // X at t=0
MX X = X0; // state vector
MX U("U",1000); // control vector
for(int k=0; k<1000; ++k){
    X = integrator.evaluate({X,U[k]});
}
MX s_T = X[0], v_T = X[1], m_T = X[2];
...</pre>
```

() OPTEC

Minimal fuel rocket flight

minimize: u, s, v, m	-m(T)	
subject to:	$ \begin{split} \dot{s} &= v \\ \dot{v} &= (u - \alpha \ v^2)/m \\ \dot{m} &= -\beta \ u^2 \\ s(0) &= 0, s(T) = 10 \\ v(0) &= 0, v(T) = 0 \\ m(0) &= 1, \ T = 10 \\ -10 &\leq u \leq 10 \end{split} $	(1)

Solution

- 1000 controls intervals, 1000 steps per interval
- Build graph for integrating over a single interval
- This graph defines the function "integrator"
- Build up a graph with calls
- This graph defines objective and constraint funcs.
- Pass to NLP solver (IPOPT)
- Convergence after 11 iteration, 10.4 s.

Euler forward integrator

```
SX s_0("s_0"), v_0("v_0"), m_0("m_0");
std::vectorSX> x0 = {s_0,v_0,m_0};
SX u("u");
SX s = s_0, v = v_0, m = m_0;
double dt = 10.0/1000;
for(int j=0; j<1000; ++j){
    s += dt*v;
    v += dt / m * (u - alpha * v*v);
    m += -dt * beta*u*u;
}
std::vector<SX> x = {s,v,m};
FX integrator = SXFunction({x0,u},x);
```

Single shooting

```
std::vector<double> X0 = {0,0,1}; // X at t=0
MX X = X0; // state vector
MX U("U",1000); // control vector
for(int k=0; k<1000; ++k){
    X = integrator.evaluate({X,U[k]});
}
MX s_T = X[0], v_T = X[1], m_T = X[2];
...</pre>
```

OPTEC

Van-der-pol oscillator

- From JModelica example collection
- Export OCP as Modelica/Optimica XML
- Parse the XML code in CasADi, reconstruct OCP
- Solve with ACADO Toolkit
 - Open-source dynamic optimization software from OPTEC
 - Houska & Ferreau 2008-present
 - www.acadotoolkit.org
 - Spatial discretization with multiple-shooting
 - Non-linear program (NLP) solved with Sequential Quadratic Programming (SQP)
 - Limited memory Hessian approximation
 - Initialized with u = 0 for all t

Convergence after 26 iterations

OCPs can be step-by-step symbolically reformulated into a NLP

- OCPs can be step-by-step symbolically reformulated into a NLP
- Benefits: Structure exploiting, no compiler in-the-loop, no retapes for hybrid systems

- OCPs can be step-by-step symbolically reformulated into a NLP
- Benefits: Structure exploiting, no compiler in-the-loop, no retapes for hybrid systems
- By using a combination of two sorts of graphs, we can satisfy demands on speed, memory and generality

- OCPs can be step-by-step symbolically reformulated into a NLP
- Benefits: Structure exploiting, no compiler in-the-loop, no retapes for hybrid systems
- By using a combination of two sorts of graphs, we can satisfy demands on speed, memory and generality
- Shooting methods can be implemented by introducing ODE/DAE integrators into the directed graphs

- OCPs can be step-by-step symbolically reformulated into a NLP
- Benefits: Structure exploiting, no compiler in-the-loop, no retapes for hybrid systems
- By using a combination of two sorts of graphs, we can satisfy demands on speed, memory and generality
- Shooting methods can be implemented by introducing ODE/DAE integrators into the directed graphs
- CasADi: Open-source software project

Next steps

- First public release of CasADi (autumn 2010)
- Fully integrate with JModelica, support all features
- Applications: solar power, combined cycle, hydropower valley
- Large-scale (distributed, parallel) SQP (with C. Savorgnan, A. Kozma)

Next steps

- First public release of CasADi (autumn 2010)
- Fully integrate with JModelica, support all features
- Applications: solar power, combined cycle, hydropower valley
- Large-scale (distributed, parallel) SQP (with C. Savorgnan, A. Kozma)

Further research

- Dynamic optimization of large-scale hybrid systems (reformulate as MINLP)
- PDE constrained optimization

Thank you for listening.

