
Roberto Parrotto – Politecnico di Milano, Italy

An XML representation of DAE systems
obtained from continuous-time

Modelica models

EOOLT 2010 – Oslo, 3 Oct 2010

Johan Åkesson – Lund University & Modelon AB, Sweden
Francesco Casella – Politecnico di Milano, Italy

Motivations of the work

• Modelica gaining popularity for system-level modelling
of etherogeneous physical systems

• Current Modelica tools mainly focused on simulation
• Many other possible usages of the model

– (Dynamic) optimization
– Parameter identification
– Transformations of the DAEs into specific forms for control

analysis and design (e.g. LFT, linearized transfer function)
– Model order reduction
– Derivation of inverse kinematics and inverse dynamics

controllers
– ...

• Tools already exist to perform these activities
(input data: continuous-time DAEs)

Goals of the work

• Definition of a formalism for the interfacing between
Modelica front ends and Equation-Based back-ends

• Representation of continuous time DAEs models at the
lower possible level
– Scalar DAEs
– No hierarchical aggregation/inheritance
– No complex data structures
– Suppor t of functions (widely used in Modelica)

• Easy generation from the internal AST representation of
the flattened model

• Easy transformation into the input of anyback-end tool

XML Schema / XSLT

Why not ”Flat Modelica”?

• Modelica is meant for high-level, efficient and convenient
modelling of structured systems

• Semantics far too rich for representation of plain DAEs
– Hard to define a ”flat enough” unique subset of the language for

this purpose

• Translation of flat Modelica into the input of back-end
tools requires a Modelica compiler
– Highly specialised software
– In most cases (commercial tools) not possible to write your own

extensions to the compiler

• XML parsers and XSLT tools widely available and free

Much easier to write your own back-end
Interface starting from an XML representation

DAE System: set of variables

f(der(x), x, u, w, t, p, q) = 0

• x vector of time-varying state variables
• u vector of time-varying input variables
• w vector of time-varying algebraic variables
• p bound time-invariant parameters
• q other unknown time-invariant parameters
• t continuous time variable

DAE System: set of equations

Dynamic equations

Fi(x, der(x), u, w, t, p, q) = 0

• Every function Fi denotes a valid scalar expression
• Residual form <exp1> - <exp2> = 0
• These equations determine the values of w and der(x),

given x, u, p, q and t
• Commonly used for simulation, once initialization has

been performed

DAE System: set of equations

Parameter-Binding Equations
pi = Gi (p)

• Acyclic system of equations (strictly diagonal BLT)

Initial Equations
Hi(x, der(x), u, w, p, q)=0

• Combined with the Dynamic equations and Parameter
Binding equations,
determine the values of x and q at the initial time t0

Important remark
• Different subsets or the equations for different problems
• Simulation

– Complete set of equations numerically solved at initialization
– Dynamic equations numerically solved at each time step, with

fixed p and q

• Transformation into LFT form
– Parameter binding equations solved symbolically for the

uncertain parameters
– Results symbolically substituted into dynamic equations
– Initial equations irrelevant

• Optimization
– Some parameters might be subject to dynamic optimization, so

their numerical values are not fixed a priori during the
optimization run

– Also initial conditions might be subject to optimization

Representation of Modelica functions

• Equations and variables are brought into scalar form
– Systems are typically heterogeneous, so maintaining arrays and

complex data types is not that useful
– Eventually all scalars grouped into one big ”system vector”

But...
• Modelica function algorithms involve complex data

structures (not easily scalarized)

• Equations involves scalars only
• Original data structures are kept in the function definition
• At the interface, constructors populated with scalar

variables are used
• Easy translation into any back-end!

Functions with structured inputs

An equation with a function call to F is represented as:

F(R(x,{y[1],y[2],y[3]})) -3=0

record R
Real X;
Real Y[3];
end R;

function F
input R X;
output Real Y;
end F;

Functions with structured output

function f
input Real X;
output Real Y[3];
end f;

x + f(y) * f(z)=0 (* scalar product) is mapped into

({aux1,aux2,aux3}) = f(y);
({aux4,aux5,aux6}) = f(z);
X+aux1*aux4+aux2*aux5+aux3*aux6=0

Functions with multiple outputs

record R1
Real X;
Real Y[2,2];
end R1;

(var1,R1(var2,{{var3,var4},{var5,var6}}))=F1(x)

(out1,out2,...,outN) = f(in1,in2,...,inN)

function F1
input Real x;
output Real y;
output R1 r;
end F1;

A call to F1 is mapped into a special form of equation
(not in residual form):

The FMI XML Schema

http://www.functional-mockup-interface.org/

• The FMI 1.0 schema as a starting point:
– Advantage of starting from an accepted standard
– Already contains a definition of variables

• Definition of variables extended with qualified names
supporting array indices

• The schema has been extended with the representation
of equations, functions and records
• Functions cannot be fully scalarized
• Arrays and Records serve as containers for scalar

variables in function arguments

XML Schema : modularity

• A modular approach based on namespaces:
– Reuse
– Extensibility
– Easier maintenance

• Modules:
– Expressions (exp)
– Equations (equ)
– Functions (fun)
– Algorithms (fun)
– Optimization (opt)

XML Schema : expressions

• Supported expressions:
– Literal expressions
– Unary operations (including built-in functions)
– Binary operations (+,-,*,/,^,...)
– Function Calls (referring to user-defined functions)

• Example: 3+der(x)
<exp:Add>

<exp:IntegerLiteral>3</exp:IntegerLiteral>

<exp:Der>

<exp:Identifier>x</exp:Identifier>

</exp:Der>

<exp:Add>

XML Schema : equations

• Dynamic equations:
– Residual form equations, e.g. der(x) = -x

– Function call equations,e.g. (v,w) = F(4)

• Initial equations
• Binding equations, e.g. p_3 = p_1+p_2

<equ:Equation>
<exp:Sub>

<exp:Der>
<exp:Identifier>

<exp:QualifiedNamePart name=”x"/>
</exp:Identifier>

</exp:Der>
<exp:Neg>

<exp:Identifier>
<exp:QualifiedNamePart name=”x"/>

</exp:Identifier>
</exp:Neg>

</exp:Sub>
</equ:Equation>

XML Schema : functions

• Algorithms:
– Represent the algorithm of user defined functions
– Vectors and records are supported

• Function definition
• Function call in equations can have left hand side of type

vector of scalars, record of scalars, scalars, null
elements (v,w) = F(4)

<equ:FunctionCallEquation>
<equ:OutputArgument>

<exp:Identifier> <exp:QualifiedNamePart name="v"/> </exp:Identifier>
</equ:OutputArgument>
<equ:OutputArgument>

<exp:Identifier> <exp:QualifiedNamePart name=”v"/> </exp:Identifier>
</equ:OutputArgument>
<exp:FunctionCall>

<exp:Name> <exp:QualifiedNamePart name="F"/> </exp:Name>
<exp:Arguments>

<exp:IntegerLiteral>4</exp:IntegerLiteral>
</exp:Arguments>

</exp:FunctionCall>
</equ:FunctionCallEquation>

XML Schema : optimization problem

Extension of the DAE schema
• Objective function
• Optimization intervals
• Constraints

XML Code Generation in JModelica

• Modelica models are first flattened
• XML schema structure mapped to the abstract syntax

tree of the compiler
• Aspect oriented implementation of the code generation,

using JastAdd

Test case: ACADO
• ACADO: optimization tool developed by KU Leuven
• Export of model from JModelica.org platform
• Transform the XML document into ACADO's native input

format
• Import the model in ACADO
• Solve optimization problem in ACADO

optimization VDP_Opt (objective=cost(finalTime),
startTime = 0, finalTime = 20)

Real x1(start=0,fixed=true);
Real x2(start=1,fixed=true);
input Real u;
Real cost(start=0,fixed=true);

equation
der(x1) = (1 - x2^2) * x1 - x2 + u;
der(x2) = x1;
der(cost) = x1^2 + x2^2 + u^2;

constraint
u<=0.75;

end VDP_Opt;

Conclusions and future work
• With this work a representation for (continuous-time)

DAE is proposed
• It is shown how to map the schema to the Modelica

language and, concretely, to the JModelica.org compiler
• It is shown how to extend the schema according to

special purpose needs, such as optimization problems
• Future work

• Extension to hybrid models
→ complete coverage of Modelica models

• Standardization within the Modelica Association
(as an extension of FMI?)

• Extension to allow separate compilation
(as an extension of FMI?)

• Continued work on integration with ACADO

