Roberto Parrotto — Politecnico di Milano, Italy
Johan Akesson — Lund University & Modelon AB, Sweden
Francesco Casella — Politecnico di Milano, Italy

X7
(= S
RVAT L

T/ RVAGREN
A

e /I/lodelon_

LUND

UNIVERSITY

An XML representation of DAE systems
obtained from continuous-time
Modelica models

EOOLT 2010 — Oslo, 3 Oct 2010

Motivations of the work

 Modelica gaining popularity for system-level modelling
of etherogeneous physical systems

e Current Modelica tools mainly focused on simulation

 Many other possible usages of the model
— (Dynamic) optimization
— Parameter identification

— Transformations of the DAESs into specific forms for control
analysis and design (e.g. LFT, linearized transfer function)

— Model order reduction

— Derivation of inverse kinematics and inverse dynamics
controllers

e Tools already exist to perform these activities
(input data: continuous-time DAES)

Goals of the work

» Definition of a formalism for the interfacing between
Modelica front ends and Equation-Based back-ends

* Representation of continuous time DAEs models at the
lower possible level
— Scalar DAEs
— No hierarchical aggregation/inheritance
— No complex data structures
— Suppor t of functions (widely used in Modelica)

« Easy generation from the internal AST representation of
the flattened model

o Easy transformation into the input of anyback-end tool

» XML Schema / XSLT

Why not "Flat Modelica”?

 Modelica is meant for high-level, efficient and convenient
modelling of structured systems
e Semantics far too rich for representation of plain DAEs

— Hard to define a "flat enough” unique subset of the language for
this purpose

* Translation of flat Modelica into the input of back-end
tools requires a Modelica compiler
— Highly specialised software

— In most cases (commercial tools) not possible to write your own
extensions to the compiler

XML parsers and XSLT tools widely available and free

j> Much easier to write your own back-end
Interface starting from an XML representation

DAE System: set of variables

f(derx), x, u,w, t,p,q) =0

e X vector of time-varying state variables

e U vector of time-varying input variables

e W Vvector of time-varying algebraic variables
e p bound time-invariant parameters

e g other unknown time-invariant parameters
e t continuous time variable

DAE System: set of equations

Dynamic equations

F.(x, derk), u,w, t,p,q) =0

« Every function F; denotes a valid scalar expression
 Residual form <expl> - <exp2>=0

« These equations determine the values of w and der(),
given x, U, p, dand t

« Commonly used for simulation, once initialization has
been performed

DAE System: set of equations

Parameter-Binding Equations
pi = G; (P)

« Acyclic system of equations (strictly diagonal BLT)

Initial Equations
H.(x, derk), u, w, p, g)=0

 Combined with the Dynamic equations and Parameter
Binding equations,
determine the values of x and g at the initial time t,

Important remark

Different subsets or the equations for different problems

Simulation
— Complete set of equations numerically solved at initialization
— Dynamic equations numerically solved at each time step, with
fixed pand g
Transformation into LFT form

— Parameter binding equations solved symbolically for the
uncertain parameters

— Results symbolically substituted into dynamic equations
— Initial equations irrelevant
Optimization

— Some parameters might be subject to dynamic optimization, so
their numerical values are not fixed a priori during the
optimization run

— Also initial conditions might be subject to optimization

Representation of Modelica functions

e Equations and variables are brought into scalar form

— Systems are typically heterogeneous, so maintaining arrays and
complex data types is not that useful

— Eventually all scalars grouped into one big "system vector”
But...

* Modelica function algorithms involve complex data
structures (not easily scalarized)

el

e Equations involves scalars only
* Original data structures are kept in the function definition

« At the interface, constructors populated with scalar
variables are used

 Easy translation into any back-end!

Functions with structured inputs

record R function F
Real X; iInput R X;
Real Y[3]; output Real Y,
end R; end F;

An equation with a function call to F is represented as:

F(R(X,1y[11.y[2].y[3]}) -3=0

Functions with structured output

function f

iInput Real X;
output Real Y[3];
end f;

X + f(y) * f(z)=0 (* scalar product) is mapped into
({auxl,aux2,aux3}) = f(y);

({aux4,aux5,aux6}) = f(z);
X+auxl*aux4+aux2*auxb+aux3*auxe=0

Functions with multiple outputs

(outl,out2,...,outN) = f(in1,in2,...,InN)

record R1 function F1

Real X; iInput Real x;

Real Y[2,2]; output Real y;

end R1; output R1r;
end F1;

A call to F1 is mapped into a special form of equation
(not in residual form):

(varl,R1(var2,{{var3,var4}{var5,var6}}))=F1(x)

The FMI XML Schema

« The FMI 1.0 schema as a starting point:
— Advantage of starting from an accepted standard
— Already contains a definition of variables

« Definition of variables extended with qualified names
supporting array indices

 The schema has been extended with the representation
of equations, functions and records

« Functions cannot be fully scalarized

e Arrays and Records serve as containers for scalar
variables in function arguments

http://www.functional-mockup-interface.org/

XML Schema : modularity

« Amodular approach based on namespaces:
— Reuse
— Extensibility
— Easier maintenance

 Modules:
— EXpressions (exp)
— Equations (equ)
— Functions (fun)
— Algorithms (fun)
— Optimization (opt)

XML Schema : expressions

e Supported expressions:

— Literal expressions

— Unary operations (including built-in functions)

— Binary operations (+,-,*,/,*,...)

— Function Calls (referring to user-defined functions)
 Example: 3+der(x)
<exp:Add>

<exp:IntegerLiteral>3</exp:IntegerLiteral>

<exp:Der>

<exp:ldentifier>x</exp:ldentifier>

</exp:Der>
<exp:Add>

XML Schema : equations

 Dynamic equations:
— Residual form equations, e.g. der(x) = -x
— Function call equations,e.g. (v,w) = F(4)
 Initial equations
* Binding equations, e.g.p 3=p _1+p 2

<equ:Equation>
<exp:Sub>
<exp:Der>
<exp:ldentifier>
<exp:QualifiedNamePart name="x"/>
</exp:ldentifier>
</exp:Der>
<exp:Neg>
<exp:ldentifier>
<exp:QualifiedNamePart name="x"/>
</exp:ldentifier>
</exp:Neg>
</exp:Sub>
</equ:Equation>

XML Schema : functions

 Algorithms:
— Represent the algorithm of user defined functions
— Vectors and records are supported

* Function definition

e Function call in equations can have left hand side of type
vector of scalars, record of scalars, scalars, null
elements (v,w) = F(4)
<equ:FunctionCallEquation>
<equ:OutputArgument>
</equ:OutputArgument>
<equ:OutputArgument>

<exp:ldentifier> <exp:QualifiedNamePart name="v"/> </exp:ldentifier>
</equ:OutputArgument>
<exp:FunctionCall>

<exp:Arguments>

<exp:IntegerLiteral>4</exp:IntegerLiteral>

</exp:Arguments>

</exp:FunctionCall>
</equ:FunctionCallEquation>

XML Schema : optimization problem

Extension of the DAE schema

* Objective function

o Optimization intervals

e Constraints opt:ObjectiveFunction

opt:IntervalStartTime

Optimization E]—(. E optintervalFinalTime

~J on opt:TimePoints

opt:Constraints

XML Code Generation in JModelica

e Modelica models are first flattened

XML schema structure mapped to the abstract syntax
tree of the compiler

 Aspect oriented implementation of the code generation,
using JastAdd

public void FArtmBinExp.prettyPrint XML (Printer p, PrintStream str, String indent, Object o){
String namespace = "exp":
String tag = this.xmlTag():
FExp left = getleft():
FExp right= getRight():

str.println(indent + "<" + namespace + ":" + tag + ">");
left.prettyPrint XML (str,p.indent (indent));
right.prettyPrint XML (str,p.indent (indent));
str.println(indent + "</"+ namespace + ":" + tag + ">");

Test case: ACADO |

 ACADO: optimization tool developed by KU Leuven
 Export of model from JModelica.org platform

 Transform the XML document into ACADQ's native input
format

e Import the model in ACADO
« Solve optimization problem in ACADO

opti m zati on VDP_Opt (objective=cost(finalTime),
startTime = 0, finalTime = 20)
Real Xl(Stal‘tZO,flxed:tl’ue), DifferentialState x1 DifferentialState x2

Real x2(start=1,fixed=true); "ol I 5]
i nput Real u; o] o
Real cost(start=0,fixed=true); 0.3] 02}

-0.4

equati on s | | T oL\ . .
der(xl) = (1 - x272) *x1- x2 + u; o 5 10 15 20 o 5 10 15 2
der(x2) = x1, Control u
der(cost) = x1"2 + x2"2 + u2; 1 '

constrai nt
u<=0.75;

end VDP_Opt;

OO oooooooo
NHEOFENWEULOIN

Conclusions and future work

With this work a representation for (continuous-time)
DAE is proposed

It is shown how to map the schema to the Modelica
language and, concretely, to the JModelica.org compiler

It is shown how to extend the schema according to
special purpose needs, such as optimization problems

Future work

e Extension to hybrid models
— complete coverage of Modelica models

e Standardization within the Modelica Association
(as an extension of FMI?)

« Extension to allow separate compilation
(as an extension of FMI?)

e Continued work on integration with ACADO

/hadelan_

