
EA D S INNOVA TION W ORKS

Systems Engineering

Execution of UML State Machines Using Modelica
Wladimir Schamai (EADS Innovation Works, Germany)
Uwe Pohlmann (University of Paderborn, Germany)
Peter Fritzson (Linköping University, Sweden)
Chris Paredis (Georgia Institute of Technology, USA)
Philipp Helle (EADS Innovation Works, UK)
Carsten Strobel (EADS Innovation Works, Germany)



Table of Contents

 Introduction and Motivation

 UML state machines to Modelica - translation approach

 UML state machine concepts supported in ModelicaML

 UML state machines execution semantics issues

 Conclusion



Introduction: ModelicaML Concept



Introduction: ModelicaML Graphical Notation

Structure

Behavior

Requirements



Introduction: Motivation

 UML state machines is a powerful formalism for describing system or
components states and modes

 To which extent can UML state machines concepts be supported in
ModelicaML?

 How to implement it?

– Create a Modelica library or implement a code generator?

– Use algorithmic code or equations?

 This presentation focuses on the resolution of issues identified when
translating UML state machines into executable Modelica code



Translation Approach

 Code generator approach was chosen instead library
– States specification (i.e. in/outgoing transitions, entry, do, exit

actions) cannot be predefined as a library component.

 ModelicaML code generator generates algorithmic Modelica
code from ModelicaML state machines because:

– The behavior of a state machine is always causal

– For inter-level transitions, i.e. transitions which cross states
hierarchy borders, the deactivation and activation of states and
the execution sequence of associated actions (exit/entry action
of states or state transitions effects) has to be performed in an
explicitly defined order.



Simple Example (1/2)



Simple Example (2/2)



UML State Machine Concepts Supported in ModelicaML

 Hierarchical states modeling
– Composite states
– Sub-state machines (reusable for multiple states)

 Regions (orthogonal states)
 Pseudo states

– initial , shallowHistory, join, fork, junction, choice, entryPoint, exitPoint,
terminate

 Transition
– Compound transitions (a transitions set from state to state through pseudo

states)
– Inter-level transition (transitions that cross hierarchy levels)

 Events
– Change Events, Time Events, Signal Events

 State Actions
– onEntry, Do, onExit



Issues with Conflicting Transitions

What happens when x and y are
greater than 2 at the same time?

In ModelicaML: Transition which the higher
execution priority is taken (i.e. to state OK)



Priority Schema for Conflicting Transitions at Different State
Hierarchy Levels

What happens when x and y are greater that 2 at the same time?

In ModelicaML: Transition to state “OK” is taken because it is at higher
hierarchy level



Issue with Concurrent Execution in Regions

What is openValve set to?

In ModelicaML: To “false” because
Region_0 was executed first and
then Region_1 is execute.



Issues With Concurrency When Using Event Queues (1/4)

-State machine enters the
state_0 in both regions

-On entry ev1 and ev2 are
generated in state_0 in both
regions

-Transitions to state_1 is
performed in both regions
-…

What are the resulting active
states configuration?



Issues With Concurrency When Using Event Queues (2/4)

Simulation result in IBM Rhapsody

Active (resulting) states



Issues With Concurrency When Using Event Queues (3/4)

Simulation result in IBM Rhapsody

Active (resulting) states



Issues With Concurrency When Using Event Queues (4/4)

What are the resulting
states?

In ModelicaML: Independent of
whether ev1 is generated in
Region_0 or in Region_1 the state
machine ends up in state_1 in both
regions because both events are
generated when the state machines
is in state_0 in both regions and are
both consumed after the transition
to state_1 is performed.



Issues with Inter-Level Transitions

In which order
are the states
activated when
cond1 becomes
true?

In ModelicaML:
b, c, d, e2, f, g, h, i

b, c, d, e2, i, h, g, f

b, c, d, e2, i, g, h, f

b, c, d, e2, f, g, h, i

b, c, d, e2, f, h, g, i



Issues with Fork and Join

In which sequence are states
b, c, d, e, and f activated
when the transitions (fork
construct) from state a is
executed?

In ModelicaML: b, d and e (based on
the fork-outgoing transitions priority),
c and f (based on their region priority)



Issues with Instantaneous States: Deadlocks (Infinite Looping)

Time-delayed transitions for breaking infinite looping at the same time instant.



Conclusion

 Using Modelica as execution language it is possible to support a
comprehensive set of UML state machines specification

 Suggested improvement of the UML state machines specification

– Priority for conflicting state-outgoing transitions

– Priority for regions

 This enhancement of specification will clarify semantic and ensure

• That state machine behavior is deterministic

• That state machine behaves as intended by the modeler



Thank you for your attention!

EADS Innovation Works
Systems Engineering Team

Wladimir Schamai
Wladimir.Schamai@eads.net


