|P Institute for Programming and Reactive Systems
TU Braunschweig, Germany

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools at ECOOP 2008, July 8, Paphos, Cyprus

A Static Aspect Language
for Modelica Models

Malte Lochau (lochau@ips.cs.tu-bs.de)
Henning Glnther (h.guenther@tu-bs.de)

- EOOLT 2008 July 8, 2008 -

S; Contents

e Introduction
* Modelica and Quality Requirements
 Principles of Aspect Orientation

o Static Aspect Language
* Rule Syntax
« Evaluation Semantics
» Variables and Type System

 Implementation Framework

e Conclusion

- EOOLT 2008 July 8, 2008

Contents

Introduction

Static Aspect Language Implementation

Conclusion

Introduction
* Modelica and Quality Requirements
 Principles of Aspect Orientation

Static Aspect Language
* Rule Syntax
« Evaluation Semantics
» Variables and Type System

Implementation Framework

Conclusion

July 8, 2008

Modelica Description Standard

Introduction

 Modelica
» Multi-discipline mathematical modeling
and simulation of complex physical systems
* Object-oriented
* Equation-based (declarative)

Static Aspect Language Implementation

 Modelica 3: ,balanced models“ concept
» Restrictions / design rules for increased model quality
» E.g. balanced connector property:

... the number of flow variables in a connector must be
identical to the number of non-causal non-flow variables ...“

- EOOLT 2008 July 8, 2008

Quality Requirements for

Modelica Models

Introduction

Static Aspect Language

Implementation Conclusion

« Generalizing: Quality Requirem
» Modeling restrictions, design rules
» Domain specific, non-functional, ..

ents

, conventions, policies, ...

,... flow variables shall be named with a _flow postfix ...”

,... Inheritance hierarchies deeper than 4 are to be avoided ..."

»Exceed expressiveness of Modelica language capabilites

- OnePort

partial nodel OnePort

»>Requirements superpose

end OnePort;

or crosscut model

- Resistor

components and

T === = ===-==--r

end Resistor;

hierarchies

ResistorTh

end ResistorTh;

nodel Resistor ext ends OnePort

nodel ResistorTh ext ends Resistor

July 8, 2008

Maintaining Quality Requirements

Introduction

Static Aspect Language

Implementation

Conclusion

» Objectives:

» Formalism for concise specification and automated

evaluation of quality requirements

* Querying Modelica models, matching point(s) meeting certain

criteria
» Rule checking by negation:

<forbidden property> => <error message>
 Model manipulation / transformation

* Modelica specific approach

July 8, 2008

Applying Aspect Orientation to Modelica

« Aspect Orientation [Kizcales et. all:

,Modularization and integration of crosscutting concerns in
existing systems*

... IS Obliviousness and Quantification®
,... applied to procedural-like programming languages*

Static Aspect Language Implementation Conclusion

« Aspect Orientation for EOO languages?
« dynamic vs. static aspects

» Structural properties of Modelica models are largely stated at
compile-time

» Static Aspects for Modelica models:

»In a model M, wherever condition C arises, perform action A*

- EOOLT 2008 July 8, 2008 “

Aspects Terminology

Static Aspect Language

Introduction

Implementation

Conclusion

» Aspects: Encapsulation of crosscutting concerns

<Poi nt cut > => <Advi ce>;

» Pointcut: Expression matching
specific elements (joinpoints)
of a model

« Joinpoints: Model entities
considered in an aspect

* Advice: Action(s) to be applied
to joinpoints

» Weaving: ,Injecting“ advices of
an aspect to the original model

l pointcut expression

f1 ow Current i; f |l ow MassFlowRate m;

flow(class) and not “* flow'
matching joinpoints
A 4
nodel Pin connect or FluidPort

fl ow Current i flow ;

end Pin;

end Pin; end FluidPort;
applying advice to joinpoints
Y
nodel Pin connect or FluidPort

fl ow MassFlowRate m_ flow ;

end FluidPort

July 8, 2008

| P Contents
Introduction Static Aspect Language Implementation Conclusion

Introduction
* Modelica and Quality Requirements
 Principles of Aspect Orientation

Static Aspect Language
* Rule Syntax
« Evaluation Semantics
» Variables and Type System

Implementation Framework

Conclusion

- EOOLT 2008 July 8, 2008 n

|P Syntactic Structure of Static Aspects
Introduction Implementation Conclusion

<Poi nt cut > => <Advi ce>;

Pointcut

Modelica Source Static Aspect

« Pointcut language:
* Expression terms matching joinpoints
* Primitives: predicates, relations
(Modelica-specific)
» Operators for term compositions
(crosscutting entities)

Advice

Joinpoints

* Advice language:
» Actions applied to each joinpoint matching the pointcut
» E.g. high-level programming language code

- EOOLT 2008 July 8, 2008 n

|P Syntax of the Pointcut Language
Introduction Implementation Conclusion

» Expressions applied to the set of all relevant joinpoints in a model
» Step-wise refinements by unary predicates, binary relations, and
operators
p = u operators | u:= <id> unary
| b(p) | ‘<pattern>*
| p and p b= <id> binary
| porp | b+
| not p | b+<n>
| existsb:p | p product p
| forallb:p | p product-d p
| P equals P p: pointcut expression
| p subset p u: unary pointcut expression
| p less p b: binary pointcut relation
| <re|op> nb n: natural number
relop: onof <,<=, =, I=, > >=
id: identifier
pattern: name pattern expression

- EOOLT 2008 July 8, 2008

|P Primitives of the Pointcut Language
Introduction Implementation Conclusion

* Predefined Modelica primitives matching subsets /
pairs of Modelica entities
» Unary primitives: High-level structural entities for model
organization, i.e. Class types

» class, model, connector, block, ...
* partialType, finalType, localType, ...

» Binary relations: Inspecting properties of model elements

» Class type members
* member(p), publicMember(p), repIMember(p), ...
 flow(p), parameter(p), modifier(p), ...

» Class type inheritance
o derivedType(p), baseType(p), subType(p), ...

» Class type behavior
» equation(p), connectEquation(p), unknown(p), ...

- EOOLT 2008 July 8, 2008

|P Pointcut Operators
Introduction Implementation Conclusion

e Crosscutting model entities: Correlation / combination
of pointcut expressions

« Operators working on joinpoint sets

» Logical combination of joinpoint sets
and, or, not, less, ...

 Naming pattern for accessing elements by their names
* flow!*

« Cardinalities: Number of joinpoints matching pointcuts
<relop>nb

« Quantification: Conditions on a range of values
forall, exists, ...

» Transitive closure of binary relations
derivedType +

- EOOLT 2008 July 8, 2008

|P Examples: Pointcut Expression
Introduction Implementation Conclusion

« Are there partial types that are never derived?

partialType and not baseType(class)

* Are there package declarations with less than 5
members?

package and (< 5 componentMember)

* Are there blocks only having output members?

forall primitiveMember : output(block)

- EOOLT 2008 July 8, 2008

|P Semantics of the Pointcut Language
Introduction Implementation Conclusion

 Evaluation of pointcuts: P:Jy— P
* Pointcut expression P
* Modelica model specification M
 Set of all joinpoints J,, present in M

* Element-wise reasoning of joinpoint sets by
considering the stated conditions of P
« Evaluation preceeds from inwards to outwards

» Stepwise refinement of the resulting joinpoint set via unary
and binary pointcut evaluation

- EOOLT 2008 July 8, 2008

|P Evaluation Rules
Introduction Static Aspect Language Implementation Conclusion

Plp]=UJu] operators U : unary pointcut — P(J,.) unary
Plb()]={i.1G,J) €B[b],j.cP[p]} ufid] ={j|j e J,, matching id }
U['pattern’]={j | j € J,, matching ’pattern’}
Plp,and p, [=P[p,] NP[p,]
Plp,orp,]=P[p,JUP[p,] B : binary relation — P(J,, x J,,) binary
Plnotp,]={jliOP[p,]} Blid] ={(y i) |y I, € Iy related pair w.r.t. id}
Pl p, less p,] =P[p,J\P[p,]

Plforallb:p]={j, |V (i) eB[b]:j;eP[p]}
Plexistsb:p]={j,130.)€B[b]:j;eP[p]}
P[py product p, | ={ (s, J) € P[p,] x P[P, 1}

PIb+]={0y 1) | 3Gy s s Gewr J) € B[D[}

- EOOLT 2008 July 8, 2008

| S; Advices
Introduction Static Aspect Language Implementation Conclusion

* Advices are executed for each joinpoint of the result
set of a pointcut evaluation

 Error reports for rule checking by negation:
<pointcut> => “violated naming convention®

» Syntax for iterating joinpoints from the result set:
<pointcut> => “violated naming convention in*“+
ResultSet.nextlitem().getName();

e ... arbitrary pieces of program code, e.g. subsequent model
manipulations by referencing AST nodes of joinpoints ...

- EOOLT 2008 July 8, 2008

|P Parameterized Pointcuts
Introduction Implementation Conclusion

e Parameterizing pointcut expressions by a set of
variable deklarations @ being bound to joinpoint sets:

[@]p : Pointcut,, where @ ={v, :=p,, ..., V, =P, }

 Enhanced evaluation semantics: (nested) “for-each” loops
over the set of joinpoint combinations in the variables of p

» Scoping: Bindings for p are adopted to all subterms of p, e.qg.:

Plp,and p,Js=P[p.]s N P[P,]s

» Further application: Passing variables to the advice part...

- EOOLT 2008 July 8, 2008

|P Example: Rule Checking by Negation
Introduction Implementation Conclusion

Balanced connector property:

... the number of flow variables in a connector must be
Identical to the number of non-causal non-flow
variables ..."”

 How to compare cardinalities within the same entity?

» Parameterized pointcut expressions: names for joinpoint
sets

[v := connector](!= flow(v)
(primitiveMember(V)
| ess (flow(v) or input(V) or output(V)
or parameter(v) or constant(V)
)
);

=> ,Balanced connector property violated in“ + v.getName()

- EOOLT 2008 July 8, 2008

S; Type System
Introduction Static Aspect Language Implementation Conclusion

* Pointcut type system

» Types according to related Modelica elements, e.g. class
types, member, equation, ...

» Ensuring ,,soundness* of pointcut expressions

» Determining types of joinpoints matching pointcut
expressions using typing rules, e.g.:

pl:al p2:02

p,orp, . o,Ug,

* Further applications:

» Enforcing ,reasonable“ parameter types for binary primitives:
equation(connector) // wrong parameter type

- EOOLT 2008 July 8, 2008

|P Contents
Introduction Static Aspect Language Conclusion

Introduction
* Modelica and Quality Requirements
 Principles of Aspect Orientation

Static Aspect Language
* Rule Syntax
« Evaluation Semantics
» Variables and Type System

Implementation Framework

Conclusion

- EOOLT 2008 July 8, 2008

Framework Architecture

Introduction Static Aspect Language Implementation Conclusion

Modelica Source Static Aspects

Modelica Rule
Parser Parser
ASTl Pointcut | Advice
Primitive Rule Mapping
Extraction Scheme Result Set (typed)
Facts Joinpoints

—

Prolog Engine

Report,
AST Nodes

\/\

- EOOLT 2008 July 8, 2008

S; Application
Introduction Static Aspect Language Conclusion

e Logic Meta Programming:
« Strong relationship between AOP and logic programming
» User language for concise rule specification (problem oriented):
static aspect language
* Implementation language for efficient rule evaluation:
logic programming language, e.g. Prolog

« Example: subclass relation

* Primitives: Facts extracted from source models
model(m1,‘OnePort).
model(m2,‘Resistor’).
derive(m2,m1l).

» Pointcuts: Rules, e.g. for transitive closure calculation
derivedType(Sub,Sup) .- derive(Sub,Sup).
derivedType(Sub,X) .- derive(Sub,X),

derivedType(X,Sup).

- EOOLT 2008 July 8, 2008

|P Contents

Introduction Static Aspect Language Implementation

 Introduction
* Modelica and Quality Requirements
 Principles of Aspect Orientation

o Static Aspect Language
* Rule Syntax
« Evaluation Semantics
» Variables and Type System

* Implementation Framework

e Conclusion

Conclusion

July 8, 2008

|P Conclusion and Future Work

Conclusion

Introduction Static Aspect Language Implementation

e« Summary:

 Static aspect language for Modelica models: formal syntax
and evaluation semantics for pointcuts

 Variable concept and type system

* Implementation framework based on the logic meta
programming approach

e Future Work:
 Finishing the implementation
» Evaluation of
» the expressiveness of the aspect language

* the efficiency of rule evaluations
« AOSD for Modelica?

- EOOLT 2008 July 8, 2008

Thank you for your attention.

Questions?

- EOOLT 2008 July 8, 2008

