
Institute for Programming and Reactive Systems
TU Braunschweig, Germany

July 8, 2008EOOLT 2008

A Static Aspect Language
for Modelica Models

Malte Lochau (lochau@ips.cs.tu-bs.de)

Henning Günther (h.guenther@tu-bs.de)

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools at ECOOP 2008, July 8, Paphos, Cyprus

July 8, 2008EOOLT 2008 1

Contents

• Introduction
• Modelica and Quality Requirements
• Principles of Aspect Orientation

• Static Aspect Language
• Rule Syntax
• Evaluation Semantics
• Variables and Type System

• Implementation Framework

• Conclusion

July 8, 2008EOOLT 2008 2

Contents

• Introduction
• Modelica and Quality Requirements
• Principles of Aspect Orientation

• Static Aspect Language
• Rule Syntax
• Evaluation Semantics
• Variables and Type System

• Implementation Framework

• Conclusion

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 3

Modelica Description Standard

• Modelica
• Multi-discipline mathematical modeling

and simulation of complex physical systems
• Object-oriented
• Equation-based (declarative)
• …

• Modelica 3: „balanced models“ concept
• Restrictions / design rules for increased model quality
• E.g. balanced connector property:

„… the number of flow variables in a connector must be
identical to the number of non-causal non-flow variables …“

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 4

Quality Requirements for Modelica Models

• Generalizing: Quality Requirements
• Modeling restrictions, design rules, conventions, policies, …
• Domain specific, non-functional, …

„… flow variables shall be named with a _flow postfix …“

„… inheritance hierarchies deeper than 4 are to be avoided …“

�Exceed expressiveness of Modelica language capabilites

�Requirements superpose
or crosscut model
components and
hierarchies

partial model OnePort
...
end OnePort;

model Resistor extends OnePort
...
end Resistor;

model ResistorTh extends Resistor
...
end ResistorTh;

OnePort

Resistor

ResistorTh

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 5

Maintaining Quality Requirements

�Objectives:
• Formalism for concise specification and automated

evaluation of quality requirements
• Querying Modelica models, matching point(s) meeting certain

criteria
• Rule checking by negation:

<forbidden property> => <error message>

• Model manipulation / transformation
• Modelica specific approach
• …

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 6

Applying Aspect Orientation to Modelica

• Aspect Orientation [Kizcales et. al]:
„Modularization and integration of crosscutting concerns in
existing systems“
„… is Obliviousness and Quantification“
„… applied to procedural-like programming languages“

• Aspect Orientation for EOO languages?
• dynamic vs. static aspects
�Structural properties of Modelica models are largely stated at

compile-time

�Static Aspects for Modelica models:
„In a model M, wherever condition C arises, perform action A“

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 7

Aspects Terminology

• Aspects: Encapsulation of crosscutting concerns

<Pointcut> => <Advice>;

• Pointcut: Expression matching
specific elements (joinpoints)
of a model

• Joinpoints: Model entities
considered in an aspect

• Advice: Action(s) to be applied
to joinpoints

� Weaving: „Injecting“ advices of
an aspect to the original model

flow(class) and not ‘*_flow‘

model Pin connector FluidPort

... ...

flow Current i; flow MassFlowRate m;

... ...

end Pin; end FluidPort;

model Pin connector FluidPort

... ...

flow Current i_flow ; flow MassFlowRate m_flow ;

... ...

end Pin; end FluidPort ;

matching joinpoints

pointcut expression

applying advice to joinpoints

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 8

Contents

• Introduction
• Modelica and Quality Requirements
• Principles of Aspect Orientation

• Static Aspect Language
• Rule Syntax
• Evaluation Semantics
• Variables and Type System

• Implementation Framework

• Conclusion

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 9

Syntactic Structure of Static Aspects

<Pointcut> => <Advice>;

• Pointcut language:
• Expression terms matching joinpoints
• Primitives: predicates, relations

(Modelica-specific)
• Operators for term compositions

(crosscutting entities)

• Advice language:
• Actions applied to each joinpoint matching the pointcut
• E.g. high-level programming language code

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 10

Syntax of the Pointcut Language

p ::= u

| b(p)

| p and p

| p or p

| not p

| exists b : p

| forall b : p

| p equals p

| p subset p

| p less p

| <relop> n b

…

u ::= <id>

| ‘<pattern>‘

b ::= <id>

| b+

| b+<n>

| p product p

| p product-d p

p: pointcut expression

u: unary pointcut expression

b: binary pointcut relation

n: natural number

relop: on of <,<=, =, !=, >, >=

id: identifier

pattern: name pattern expression

� Expressions applied to the set of all relevant joinpoints in a model

� Step-wise refinements by unary predicates, binary relations, and
operators

unaryoperators

binary

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 11

Primitives of the Pointcut Language

• Predefined Modelica primitives matching subsets /
pairs of Modelica entities

• Unary primitives: High-level structural entities for model
organization, i.e. Class types

• class, model, connector, block, …

• partialType, finalType, localType, …

• Binary relations: Inspecting properties of model elements
• Class type members

• member(p), publicMember(p), replMember(p), …

• flow(p), parameter(p), modifier(p), …

• Class type inheritance
• derivedType(p), baseType(p), subType(p), …

• Class type behavior
• equation(p), connectEquation(p), unknown(p), …

• …

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 12

Pointcut Operators

• Crosscutting model entities: Correlation / combination
of pointcut expressions

• Operators working on joinpoint sets
• Logical combination of joinpoint sets

and, or, not, less, …

• Naming pattern for accessing elements by their names
‘*_flow‘

• Cardinalities: Number of joinpoints matching pointcuts
<relop> n b

• Quantification: Conditions on a range of values
forall, exists, …

• Transitive closure of binary relations
derivedType +

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 13

Examples: Pointcut Expression

• Are there partial types that are never derived?

partialType and not baseType(class)

• Are there package declarations with less than 5
members?

package and (< 5 componentMember)

• Are there blocks only having output members?

forall primitiveMember : output(block)

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 14

Semantics of the Pointcut Language

• Evaluation of pointcuts: P : JM → P(JM)
• Pointcut expression P
• Modelica model specification M
• Set of all joinpoints JM present in M

• Element-wise reasoning of joinpoint sets by
considering the stated conditions of P

• Evaluation preceeds from inwards to outwards
• Stepwise refinement of the resulting joinpoint set via unary

and binary pointcut evaluation

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 15

Evaluation Rules

U : unary pointcut → P(Jm)

U� id � = { j | j ∈ JM matching id }

U�’pattern’�= { j | j ∈ JM matching ’pattern’}

B : binary relation → P(JM × JM)

B� id � = { (j1, j2) | j1, j2 ∈ JM related pair w.r.t. id}

P� p � = U� u �

P� b(p) � = { j1 | (j1, j2) ∈ B� b �, j∈ ∈ P� p � }

…

P� p1 and p2 � = P� p1 � � P� p2 �

P� p1 or p2 � = P � p1 � ∪ P � p2 �

P� not p1� = { j | j ∉ P� p1 � }

P� p1 less p2� = P� p1� \ P� p2 �

…

P� forall b : p � = { j2 | ∀ (j1, j2) ∈ B� b � : j1 ∈ P� p � }

P� exists b : p � = { j2 | ∃ (j1, j2) ∈ B� b � : j1 ∈ P� p � }

P� p1 product p2 � = { (j1, j2) ∈ P� p1 � × P� p2 � }

…

P� b+ � = { (j1, j2) | ∃ (j1, j2), …, (jk-1, jk) ∈ B� b �}

operators unary

binary

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 16

Advices

• Advices are executed for each joinpoint of the result
set of a pointcut evaluation

• Error reports for rule checking by negation:
<pointcut> => “violated naming convention“

• Syntax for iterating joinpoints from the result set:
<pointcut> => “violated naming convention in “ +

ResultSet.nextItem().getName();

• … arbitrary pieces of program code, e.g. subsequent model
manipulations by referencing AST nodes of joinpoints …

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 17

Parameterized Pointcuts

• Parameterizing pointcut expressions by a set of
variable deklarations Φ being bound to joinpoint sets:

[Φ]p : Pointcut
Φ
, where Φ = { v1 := p1, …, vn := pn }

• Enhanced evaluation semantics: (nested) “for-each“ loops
over the set of joinpoint combinations in the variables of p

• Scoping: Bindings for p are adopted to all subterms of p, e.g.:

P� p1 and p2 �Φ = P� p1 �Φ � P� p2 �Φ

• Further application: Passing variables to the advice part…

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 18

Example: Rule Checking by Negation

Balanced connector property:
„… the number of flow variables in a connector must be

identical to the number of non-causal non-flow
variables …“

• How to compare cardinalities within the same entity?
� Parameterized pointcut expressions: names for joinpoint

sets

[v := connector](!= flow(v)

(primitiveMember(v)

less (flow(v) or input(v) or output(v)

or parameter(v) or constant(v)

)

);

=> „Balanced connector property violated in“ + v.getName() ;

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 19

Type System

• Pointcut type system
• Types according to related Modelica elements, e.g. class

types, member, equation, …
• Ensuring „soundness“ of pointcut expressions
• Determining types of joinpoints matching pointcut

expressions using typing rules, e.g.:

• Further applications:
• Enforcing „reasonable“ parameter types for binary primitives:

equation(connector) // wrong parameter type

• …

p1 : σ


p2 : σ


p1 or p2 : σ

∪ σ



Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 20

Contents

• Introduction
• Modelica and Quality Requirements
• Principles of Aspect Orientation

• Static Aspect Language
• Rule Syntax
• Evaluation Semantics
• Variables and Type System

• Implementation Framework

• Conclusion

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 21

Framework Architecture

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 22

Application

• Logic Meta Programming:
• Strong relationship between AOP and logic programming

• User language for concise rule specification (problem oriented):
static aspect language

• Implementation language for efficient rule evaluation:

logic programming language, e.g. Prolog

• Example: subclass relation
• Primitives: Facts extracted from source models

model(m1,‘OnePort‘).

model(m2,‘Resistor‘).

derive(m2,m1).

• Pointcuts: Rules, e.g. for transitive closure calculation
derivedType(Sub,Sup) :- derive(Sub,Sup).

derivedType(Sub,X) :- derive(Sub,X),

derivedType(X,Sup).

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 23

Contents

• Introduction
• Modelica and Quality Requirements
• Principles of Aspect Orientation

• Static Aspect Language
• Rule Syntax
• Evaluation Semantics
• Variables and Type System

• Implementation Framework

• Conclusion

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 24

Conclusion and Future Work

• Summary:
• Static aspect language for Modelica models: formal syntax

and evaluation semantics for pointcuts
• Variable concept and type system
• Implementation framework based on the logic meta

programming approach

• Future Work:
• Finishing the implementation
• Evaluation of

• the expressiveness of the aspect language
• the efficiency of rule evaluations

• AOSD for Modelica?

Introduction Static Aspect Language Implementation Conclusion

July 8, 2008EOOLT 2008 25

Thank you for your attention.

Questions?

