
UNIVERSITY OF VALLADOLID
(Spain)

EcosimPro and its EL Object-Oriented

Modeling Language

ALBERTO JORRÍN
CESAR DE PRADA

PEDRO COBAS

The paper:

� EcosimPro : modeling and simulation tool

***new version 4 (4.4) : object orientation in

Ecosimpro Language (EL) ***

->official language : ESA

�The use of classes gives power to EcosimPro.

What is ECOSIMPRO?

Simulation tool:

-> EA International

-> Modeling simple/comlpex physical

systems

*** expressed:

a) differential/albegraic equations

b) ordinary/differential equations

+

discrete events

- Runs on the various Windows platforms

- Uses its own graphic environment for model design

The language used in EcosimPro

-> modeling systems:
*** combined: continuos-discrete

-> intuitive representation
-> Also to prepare experiments on models:

-> calculate steady states
-> transients
-> perform parametric studies

-> Generate reports, plots
-> Reuse C/FORTRAN functions and C++ classes
-> designed to be used in industry directly

(very complex systems / hundred var-eq)
*** succesfully used for aerospace applications

What is EL?

Key concepts in eEcosimPro

Component:
- Represent a model of a system

-> Variables

-> Differential-algebraic equations
-> Topology

-> Event-based behaviour

- Equivalence: “class” concept in OOP

- All components have:
*** CONTINUOUS block: continuos equations
*** DISCRETE block: discrete events

Port connection type

set of variables:
- to be interchanged

set of restrictions:
- to be shared

Example: Electric connection uses:
voltage and current

Partition

- Associated mathematical model
-> necessary to simulate a component

- A component may have more than one
partition

- Defines the causality of the final model

Experiment

Simulation case for:
-> A partition of a component

Library of components

Clasify components by disciplines

Mathematical capabilities

� Symbolic handling equations

- derivation

- equations reduction…

� Robust solvers for:

- non-linear equations (Newton-Raphson)

- DAE systems (DASSL, Runge-kutta)

� Uses dense and sparse matrix formats

Allows problems with thousands of state variables

to be simulated

� Has math wizards for:
- Defining design problems
- Defining boundary conditions
- Solving algebraic loops
- Reducing high-index DAE problems

� Clever mathematical algorithms
- based on the graph teory -> minimize:

* number of unknown variables
* number of equations

� Powerful discrete events handler

EL and Object Orientation

In Ecosim the complexity is hidden:

to solve systems of differential-algebraic equations …
…The user: define high level equations

by high level object-oriented language

EL is object-oriented:
components can:

- inherit from one another
- be aggregated to create other more complex
- Reuse ones to create other more complex

*** incrementally

Object oriented modeling

To outlive inevitable changes:
-> growht/ageing (any dynamic system)

Provide the modeler

� POWERFUL FEATURES:
---To hide complexity by:

1- encapsulation
*** main elements: libraries + componentes

-> Convencional EOO language (C++)
Interface: data + methods (public)

-> With EL:
Components interface:

ports + construct parameters + data

--- To enable reuse by:
2- inheritance
3- aggregation

Many components being developed:
-> Share behaviour
-> EL bring:

common data + equations
(parent components)

*** EL also provide multiple inheritance
---To create independent models
---To create models easy to mantain

SO:
EL is Bottom-up:

- Basic library components can be combined to
create (increasingly) complex components by
combining two methods:

a) Extension: by inheritance from existing
components

b) Instantiation and aggregation of existing
components

Application: create a component which represents a
complete system.

- Intermediate components can also be simulated
->->->->-> Reduction: development + maintenance
time

Classes

Equivalents to classes in classic OOPL (C++,
Java, …)
-> Use: more restricted

more simple
Compilation -> EL -> C++ (internally) :
“High level wrappers”

*** Final users are engineers and not
programmers ***

Difference component vs. Class
- component

elements to be solved by the simulation tool

+++ dynamic equations
+++ discrete events

- class

set of behaviour

+++ variables
+++ methods

…. so…

classes are normally used in EL:

-> to support the modeling of complex
systems:

… improving the use of functions:

all the functions referring to the same
utility ->->-> group together ->-> share memory

(its common variables)

DECLS BLOCK
Any kind of basic EL variable can be defined:

- simple variable
- multidimensional array

OBJECTS BLOCK
Declaration of instances of classes

METHODS BLOCK
- Defines the functional interface of a class

(are subroutines connected to a definition of a class)

- Can return a basic EL type (like functions)

Using classes

Defined in EL can be used in:
- functions
- components
- experiments
- other classes

use: the same way as in other OOPL.
point operator:

- all their variables
- public mehotds

point(.)operator

Class associated with a partition

When generating a partition…
then automatically generate:

***internal class: represent the mathematical model

Advantages:

Any partition can be encapsulated in a single class

This class provides an interface for interacting with the partition:
- initialization of variables
- steady and transient calculations,
- get values of variables,etc

Simulations can be embedded in:
components
functions
experiments
classes

...since they are programmed with the class interface

Multiple experiments can be executed in the same run

Child classes can be created by adding new variables and
methods:

a child class could provide complex experiments embedded

in a single method

Makes the language very powerfull

** embedding mathematical models inside others

An ilustrative example:

Initialization of models

Objective: allow to start a simulation from
stationary conditions

-> classes are used to formulate it

Example:
Problem electrical engine

Intuitively…

to start with stationary conditions:

equations in the INIT block:

--- only if the model is easy:

->->-> use of classes to solve it:

creating a static partition with the component

… in this case the partition would be….

With “w” and “v” values could be

computed the i(0) value

with the i(0) value, could be computed

the T(0) value

… conclusions

EL, is therefore one of the pioneer languages that
has to deal with this new way of Modeling physical
systems.

I- Advantages for the modeller
- minimise global data
- hides the complexity
- comprises:

* parameters
* data
* ports

privacy:
* discrete events
* equations

- complexity grows in a linear

- reuse

- inheritance: simplifies the modelling

- equations inserted at the time of simulation

- use of virtual equations

- equations format declarative
*** algorithms symbolically transform the equations

II- Considerations in the revolution of OOM
- Modelling is non-causal

- Tried and tested components are
constantly reused

- Extensive use of:
hidden information
encapsulated data

… to deal with the complexity

- Gift for:
make change in the models

