
Towards Unified System Modeling
with the

ModelicaML UML Profile

Adrian Pop, David Akhvlediani, Peter Fritzson

Programming Environments Laboratory,
Department of Computer and Information Science

Linköping University
adrpo@ida.liu.se

EOLT’2007, 2007-07-30

mailto:adrpo@ida.liu.se

2

Outline

Introduction
System Modeling Language (SysML™)
Modelica

ModelicaML: a UML profile for Modelica
Overview and Purpose
Diagrams

Package Diagram
Class Diagram and Internal Class Diagram
Equation Diagram
Simulation Diagram

Conclusions and Future Work

3

System Modeling Language (SysML™)

Graphical modeling language for Systems
Engineering constructed as a UML2 Profile

Designed to provide simple but powerful
constructs for modeling a wide range of systems
engineering problems

Effective in specifying requirements, structure,
behavior, allocations, and constraints on system
properties to support engineering analysis

Intended to support multiple processes and
methods such as structured, object-oriented, etc.

4

SysML™ - Diagrams

5

SysML™ - Block Definitions

6

Robotics
Automotive
Aircrafts
Satellites
Biomechanics
Power plants
Hardware-in-the-loop,
real-time simulation
etc

Modelica – General Formalism to Model Complex Systems

7

Modelica – The Next Generation Modeling Language

Declarative language
Equations and mathematical functions allow acausal
modeling, high level specification, increased
correctness

Multi-domain modeling
Combine electrical, mechanical, thermodynamic,
hydraulic, biological, control, event, real-time, etc...

Everything is a class
Strongly typed object-oriented language with a
general class concept, Java & Matlab like syntax

Visual component programming
Hierarchical system architecture capabilities

Efficient, nonproprietary
Efficiency comparable to C; advanced equation
compilation, e.g. 300 000 equations

8

Modelica Language Properties

Declarative and Object-Oriented

Equation-based; continuous and discrete
equations

Parallel process modeling of concurrent
applications, according to synchronous data flow
principle

Functions with algorithms without global side-
effects
(but local data updates allowed)

Type system inspired by
Abadi/Cardelli (Theory of Objects)

Everything is a class – Real, Integer, models,
functions, packages, parameterized classes....

9

Modelica Acausal Modeling Semantics

What is acausal modeling/design?
Why does it increase reuse?

The acausality makes Modelica classes more
reusable than traditional classes containing
assignment statements where the input-output
causality is fixed.

Example: a resistor equation:
R*i = v;

can be used in three ways:
i := v/R;
v := R*i;
R := v/i;

10

Keyword flow indicates
that currents of

connected pins sums to
zero.

A connect statement in Modelica

corresponds to equations:

connector Pin
Voltage v;
flow Current i;

end Pin;

connect(Pin1,Pin2)

Connection between Pin1 and Pin2

Pin1.v = Pin2.v
Pin1.i + Pin2.i = 0

Connector Classes, Components and Connections

11

Modelica - Reusable Class Libraries

Info
R= C= L=

G

A
C=

DC=

V
s Is

S

D T

-
+

Op
V i

E

 : 1

Info
shaft3DS=

S
shaft3D= shaftS=

S

shaft=

gear1=

gear2=

planetary=
diff=

sun=

planet=
ring=

bearing fixTooth

S
moveS move

torque

c= d=

fric=

fricTab clutch=
converter

r

w a t
fixedBase

S
state

Info
inertial

bar= body= bodyBar=

cylBody=bodyShape=

revS=
S

prismS=
S

screw S=

S
cylS=

S

univS

S
planarS=

S

sphereS

S

freeS

S
rev= prism=

screw =

cyl= univ planar= sphere
free

C

barC=

barC2=
x

y

C

sphereC c= d= cSer=

force

torque

lineForce=

lineTorque=

sensor

s sd

lineSensor

Library

advanced

Library

drive

Library

translation

12

Graphical Modeling - Drag and Drop Composition

13

inertial
x

y

axis1

axis2

axis3

axis4

axis5

axis6
r3Drive1

1
r3Motor

r3ControlqdRef
1

S

qRef
1

S

k2

i

k1

i

qddRef cut joint

l

qd

tn

Jmotor=J

gear=i

spring=c

fr
ic

=R
v0

S
rel

joint=0

S

V
s

-

+
diff

-

+
pow er

emf

La=(250/(2*D*w
m

))
Ra=250

Rd2=100

C=0.004*D/w m

-

+
OpI

Rd1=100

Ri=10

Rp1=200

Rp
2=

50

Rd4=100

hall2

Rd
3=

10
0

g1

g2

g3

hall1

g4

g5

rw

qd q

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

w Sum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q qd

iRefqRef

qdRef

Srel = n*n' + (identity(3) - n*n')*cos(q) - skew(n)*sin(q);
wrela = n*qd;
zrela = n*qdd;
Sb = Sa*Srel';
r0b = r0a;
vb = Srel*va;
wb = Srel*(wa + wrela);
ab = Srel*aa;
zb = Srel*(za + zrela + cross(wa, wrela));
fa = Srel'*fb;
ta = Srel'*tb;

Hierarchical Composition Diagram for a Model of a Robot

14

Multi-Domain Modelica Model - DCMotor

A DC motor can be thought of as an electrical circuit
which also contains an electromechanical component.

model DCMotor
Resistor R(R=100);
Inductor L(L=100);
VsourceDC DC(f=10);
Ground G;
ElectroMechanicalElement EM(k=10,J=10, b=2);
Inertia load;

equation
connect(DC.p,R.n);
connect(R.p,L.n);
connect(L.p, EM.n);
connect(EM.p, DC.n);
connect(DC.n,G.p);
connect(EM.flange,load.flange);

end DCMotor

load

EM
DC

G

R L

15

SysML vs. Modelica

SysML
Pros

Can model all aspects of complex system design
Cons

Precise behavior can be described but not simulated
(executed)

Modelica
Pros

Precise behavior can be described and simulated
Cons

Cannot model all aspects of complex system design,
i.e. requirements, inheritance diagrams, etc

16

Outline so far

Introduction
System Modeling Language (SysML™)
Modelica

ModelicaML: a UML profile for Modelica
Overview and Purpose
Diagrams

Package Diagram
Class Diagram and Internal Class Diagram
Equation Diagram
Simulation Diagram

Conclusions and Future Work

17

ModelicaML - a UML profile for Modelica
Supports modeling with all Modelica constructs i.e.
restricted classes, equations, generics, discrete variables,
etc.

Multiple aspects of a system being designed are supported
system development process phases such as requirements
analysis, design, implementation, verification, validation and
integration.

Supports mathematical modeling with equations (to
specify system behavior). Algorithm sections are also
supported.

Simulation diagrams are introduced to configure, model
and document simulation parameters and results in a
consistent and usable way.

The ModelicaML meta-model is consistent with SysML in
order to provide SysML-to-ModelicaML conversion and
back.

18

ModelicaML - Purpose

Targeted to Modelica and SysML users

Provide a SysML/UML view of Modelica for
Documentation purposes
Language understanding

To extend Modelica with additional design
capabilities (requirements modeling,
inheritance diagrams, etc)

To support translation between Modelica and
SysML models via XMI

19

ModelicaML - Overview

20

ModelicaML – Package Diagram
The Package Diagram groups logically connected user
defined elements into packages.
The primarily purpose of this diagram is to support the
specifics of the Modelica packages.

21

ModelicaML – Class Diagram
ModelicaML provides
extensions to SysML in order
to support the full set of
Modelica constructs.

ModelicaML defines unique
class definition types
ModelicaClass,
ModelicaModel,
ModelicaBlock,
ModelicaConnector,
ModelicaFunction and
ModelicaRecord that
correspond to class,
model, block,
connector, function and
record restricted Modelica
classes.

Modelica specific restricted
classes are included because
a modeling tool needs to
impose their semantic
restrictions (for example a
record cannot have equations,
etc).

Class Diagram defines Modelica
classes and relationships between
classes, like generalizations,
association and dependencies

22

ModelicaML - Internal Class Diagram

Internal Class Diagram shows the internal
structure of a class in terms of parts and
connections

23

ModelicaML – Equation Diagram

behavior is specified using Equation Diagrams
all Modelica equations have their specific diagram:

initial, when, for, if equations

24

ModelicaML – Simulation Diagram

Used to model, configure and document simulation
parameters and results
Simulation diagrams can be integrated with any Modelica
modeling and simulation environment (OpenModelica)

25

Outline so far

Introduction
System Modeling Language (SysML™)
Modelica

ModelicaML: a UML profile for Modelica
Overview and Purpose
Diagrams

Package Diagram
Class Diagram and Internal Class Diagram
Equation Diagram
Simulation Diagram

Conclusions and Future Work

26

Conclusions

ModelicaML – UML profile for Modelica
Targeted to Modelica and SysML users
Provides a SysML/UML view of Modelica for

Documentation purposes
Language understanding

extends Modelica with additional design
capabilities (requirements modeling,
inheritance diagrams, etc)
supports translation between Modelica and
SysML models via XMI

27

Future Work
integration with Modelica Development Tooling (MDT) and the
OpenModelica Compiler
Translation between Modelica, ModelicaML and SysML
Further improvements to ModelicaML specification

28

End

Thank You!
Questions?

Modelica Development Tooling (MDT)
http://www.ida.liu.se/~pelab/modelica/OpenModelica/MDT/

OpenModelica Project
http://www.ida.liu.se/~pelab/modelica/OpenModelica.html

http://www.ida.liu.se/~pelab/modelica/OpenModelica/MDT/
http://www.ida.liu.se/~pelab/modelica/OpenModelica.html

	Towards Unified System Modeling �with the �ModelicaML UML Profile
	Outline
	System Modeling Language (SysML™)
	SysML™ - Diagrams
	SysML™ - Block Definitions
	Modelica – General Formalism to Model Complex Systems
	Modelica – The Next Generation Modeling Language
	Modelica Language Properties
	Modelica Acausal Modeling Semantics
	Connector Classes, Components and Connections
	Modelica - Reusable Class Libraries
	Graphical Modeling - Drag and Drop Composition
	Hierarchical Composition Diagram for a Model of a Robot
	Multi-Domain Modelica Model - DCMotor
	SysML vs. Modelica
	Outline so far
	ModelicaML - a UML profile for Modelica
	ModelicaML - Purpose
	ModelicaML - Overview
	ModelicaML – Package Diagram
	ModelicaML – Class Diagram
	ModelicaML - Internal Class Diagram
	ModelicaML – Equation Diagram
	ModelicaML – Simulation Diagram
	Outline so far
	Conclusions
	Future Work
	End

